Abstract

We model a backward mirrorless optical parametric oscillator in a fragmented GaN waveguide consisting of a sequence of submicronic periodically poled elements separated by uniformly polarized connection sections representing stitching errors. We find that the generated coherent phase of the backscattered wave locks the phases of the forward propagating waves in such a way that the dynamics is nonintuitivelly as efficient as for a uniform quasi-phase-matched waveguide. The best coherence transfer to the backward wave, obtained for perfect group-velocity matching of the forward propagating waves, requires a nanoscale poled periodicity, which is achieved in GaN through epitaxy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription