Abstract

Spectroscopy of molecular mixtures with broadband femtosecond laser pulses often involves simultaneous excitation of multiple molecular species with close resonance frequencies. Interpreting the collective optical response typically requires Fourier analysis of time-resolved signals. We propose and demonstrate an alternative method of separating coherent Raman scattering signals from two molecular components with neighboring vibrational modes. We exploit “silence windows,” which arise from coupling of the vibrational and rotational degrees of freedom in molecular dynamics. In silence windows, the detected signal stems solely from the minority species (here, CO2), while the strong resonant background from the dominant species (O2) is greatly suppressed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  2. S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
    [CrossRef]
  3. S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
    [CrossRef]
  4. P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
    [CrossRef]
  5. M. Bitter, E. A. Shapiro, and V. Milner, Phys. Rev. A 85, 043410 (2012).
    [CrossRef]
  6. T. Hansson, Phys. Rev. A 61, 033404 (2000).
    [CrossRef]
  7. S. Wallentowitz, I. A. Walmsley, L. J. Waxer, and R. Th, J. Phys. B 35, 1967 (2002).
    [CrossRef]
  8. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
    [CrossRef]
  9. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
    [CrossRef]
  10. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
    [CrossRef]
  11. W. Kulatilaka, J. Gord, and S. Roy, Appl. Phys. B 102, 141 (2011).
    [CrossRef]
  12. E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000).
    [CrossRef]
  13. S. Fleischer, I. S. Averbukh, and Y. Prior, Phys. Rev. A 74, 041403 (2006).
    [CrossRef]
  14. G. Tejeda, B. Mate, and S. Montero, J. Chem. Phys. 103, 568 (1995).
    [CrossRef]
  15. B. P. Stoicheff, Can. J. Phys. 36, 218 (1958).
    [CrossRef]
  16. V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
    [CrossRef]
  17. V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
    [CrossRef]
  18. J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
    [CrossRef]

2012 (1)

M. Bitter, E. A. Shapiro, and V. Milner, Phys. Rev. A 85, 043410 (2012).
[CrossRef]

2011 (1)

W. Kulatilaka, J. Gord, and S. Roy, Appl. Phys. B 102, 141 (2011).
[CrossRef]

2010 (1)

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

2009 (1)

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

2007 (2)

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

2006 (2)

S. Fleischer, I. S. Averbukh, and Y. Prior, Phys. Rev. A 74, 041403 (2006).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

2004 (1)

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

2002 (1)

S. Wallentowitz, I. A. Walmsley, L. J. Waxer, and R. Th, J. Phys. B 35, 1967 (2002).
[CrossRef]

2001 (2)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

2000 (2)

T. Hansson, Phys. Rev. A 61, 033404 (2000).
[CrossRef]

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000).
[CrossRef]

1995 (1)

G. Tejeda, B. Mate, and S. Montero, J. Chem. Phys. 103, 568 (1995).
[CrossRef]

1991 (1)

J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
[CrossRef]

1958 (1)

B. P. Stoicheff, Can. J. Phys. 36, 218 (1958).
[CrossRef]

Arakcheev, V. G.

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

Averbukh, I. S.

S. Fleischer, I. S. Averbukh, and Y. Prior, Phys. Rev. A 74, 041403 (2006).
[CrossRef]

Beaud, P.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Bitter, M.

M. Bitter, E. A. Shapiro, and V. Milner, Phys. Rev. A 85, 043410 (2012).
[CrossRef]

Chaux, R.

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000).
[CrossRef]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Dedic, C. E.

S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
[CrossRef]

Engel, S. R.

S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
[CrossRef]

Fanjoux, G.

J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
[CrossRef]

Faucher, O.

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000).
[CrossRef]

Fleischer, S.

S. Fleischer, I. S. Averbukh, and Y. Prior, Phys. Rev. A 74, 041403 (2006).
[CrossRef]

Frey, H. M.

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Gord, J.

W. Kulatilaka, J. Gord, and S. Roy, Appl. Phys. B 102, 141 (2011).
[CrossRef]

Gord, J. R.

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Hansson, T.

T. Hansson, Phys. Rev. A 61, 033404 (2000).
[CrossRef]

Hertz, E.

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000).
[CrossRef]

Kinnius, P. J.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

Kireev, V. V.

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

Kulatilaka, W.

W. Kulatilaka, J. Gord, and S. Roy, Appl. Phys. B 102, 141 (2011).
[CrossRef]

Lang, T.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

Lavorel, B.

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000).
[CrossRef]

J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
[CrossRef]

Leipertz, A.

S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
[CrossRef]

Lucht, R. P.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Mate, B.

G. Tejeda, B. Mate, and S. Montero, J. Chem. Phys. 103, 568 (1995).
[CrossRef]

Meyer, T. R.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
[CrossRef]

Miller, J. D.

S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
[CrossRef]

Millot, G.

J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
[CrossRef]

Milner, V.

M. Bitter, E. A. Shapiro, and V. Milner, Phys. Rev. A 85, 043410 (2012).
[CrossRef]

Montero, S.

G. Tejeda, B. Mate, and S. Montero, J. Chem. Phys. 103, 568 (1995).
[CrossRef]

Morozov, V. B.

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

Motzkus, M.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

Olenin, A. N.

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

Prior, Y.

S. Fleischer, I. S. Averbukh, and Y. Prior, Phys. Rev. A 74, 041403 (2006).
[CrossRef]

Richardson, D.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

Roy, S.

W. Kulatilaka, J. Gord, and S. Roy, Appl. Phys. B 102, 141 (2011).
[CrossRef]

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

Ruttenberg, P.

J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
[CrossRef]

Seeger, T.

S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
[CrossRef]

Shapiro, E. A.

M. Bitter, E. A. Shapiro, and V. Milner, Phys. Rev. A 85, 043410 (2012).
[CrossRef]

Steinfeld, J. I.

J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
[CrossRef]

Stoicheff, B. P.

B. P. Stoicheff, Can. J. Phys. 36, 218 (1958).
[CrossRef]

Tejeda, G.

G. Tejeda, B. Mate, and S. Montero, J. Chem. Phys. 103, 568 (1995).
[CrossRef]

Th, R.

S. Wallentowitz, I. A. Walmsley, L. J. Waxer, and R. Th, J. Phys. B 35, 1967 (2002).
[CrossRef]

Tunkin, V. G.

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

Valeev, A. A.

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

Wallentowitz, S.

S. Wallentowitz, I. A. Walmsley, L. J. Waxer, and R. Th, J. Phys. B 35, 1967 (2002).
[CrossRef]

Walmsley, I. A.

S. Wallentowitz, I. A. Walmsley, L. J. Waxer, and R. Th, J. Phys. B 35, 1967 (2002).
[CrossRef]

Waxer, L. J.

S. Wallentowitz, I. A. Walmsley, L. J. Waxer, and R. Th, J. Phys. B 35, 1967 (2002).
[CrossRef]

Xie, X. S.

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Yakovlev, D. V.

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

Appl. Phys. B (1)

W. Kulatilaka, J. Gord, and S. Roy, Appl. Phys. B 102, 141 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

Can. J. Phys. (1)

B. P. Stoicheff, Can. J. Phys. 36, 218 (1958).
[CrossRef]

Chem. Phys. Lett. (1)

P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, Chem. Phys. Lett. 344, 407 (2001).
[CrossRef]

J. Chem. Phys. (3)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000).
[CrossRef]

G. Tejeda, B. Mate, and S. Montero, J. Chem. Phys. 103, 568 (1995).
[CrossRef]

J. Phys. B (1)

S. Wallentowitz, I. A. Walmsley, L. J. Waxer, and R. Th, J. Phys. B 35, 1967 (2002).
[CrossRef]

J. Phys. Chem. (1)

J. I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, and B. Lavorel, J. Phys. Chem. 95, 9638 (1991).
[CrossRef]

J. Phys. Chem. B (1)

J.-X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

J. Raman Spectrosc. (2)

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1038 (2007).
[CrossRef]

V. G. Arakcheev, V. V. Kireev, V. B. Morozov, A. N. Olenin, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, J. Raman Spectrosc. 38, 1046 (2007).
[CrossRef]

Phys. Rev. A (3)

S. Fleischer, I. S. Averbukh, and Y. Prior, Phys. Rev. A 74, 041403 (2006).
[CrossRef]

M. Bitter, E. A. Shapiro, and V. Milner, Phys. Rev. A 85, 043410 (2012).
[CrossRef]

T. Hansson, Phys. Rev. A 61, 033404 (2000).
[CrossRef]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

Other (1)

S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, “Hybrid femtosecond/picosecond coherent, anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures”, J. Raman Spectrosc., doi: 10.1002/jrs.4261 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Calculated two-photon spectrum of the pump-Stokes field (solid black line). O, Q, and S branches of one vibrational resonance in O2 and the corresponding rotational splittings are indicated with green rectangles, red circles, and blue diamonds, respectively. Two separate Fermi dyads of CO2 with magnitudes reflecting their relative cross sections [14] are depicted as direct and inverted black triangles.

Fig. 2.
Fig. 2.

Time-resolved CARS signal at room temperature from (a) mixture of O2 and CO2, (b) pure oxygen, and (c) pure carbon dioxide. Comparing experimental data (solid red line) with numerical calculation (dashed black line) is used for extracting the relative contribution of O, Q, and S branches in oxygen, as well as the collisional decay time. Respective Fourier spectra are shown in the insets.

Fig. 3.
Fig. 3.

(a) Normalized CARS signal at a silence window of O2 with relative CO2 concentration: 30%, 20%, 10%, 0% high to low (140 fs probe duration). (b) Intensity ratio of CARS signals at times t2 and t1 for varying CO2 concentrations (1.3 ps probe duration): dashed line (simple model), dotted line (numerical fit).

Metrics