Abstract

Nonlinear mode coupling among two beams of different wavelength that copropagate in a bimodal highly birefringent optical fiber may lead to the effect of modal attraction. Under such circumstances, the modal distribution of light at a pump wavelength is replicated at the signal wavelength, nearly irrespective of the input mode excitation conditions of the signal.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Garth and C. Pask, J. Opt. Soc. Am. B 9, 243 (1992).
    [CrossRef]
  2. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
    [CrossRef]
  3. S. Mumtaz, R. J. Essiambre, and G. P. Agrawal, J. Lightwave Technol. 31, 398 (2013).
    [CrossRef]
  4. J. Fatome, S. Pitois, P. Morin, and G. Millot, Opt. Express 18, 15311 (2010).
    [CrossRef]
  5. V. V. Kozlov, J. Nuño, and S. Wabnitz, J. Opt. Soc. Am. B 28, 100 (2011).
    [CrossRef]
  6. V. V. Kozlov, K. Turitsyn, and S. Wabnitz, Opt. Lett. 36, 4050 (2011).
    [CrossRef]
  7. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, Opt. Lett. 12, 729 (1987).
    [CrossRef]
  8. V. V. Kozlov, M. Barozzi, A. Vannucci, and S. Wabnitz, J. Opt. Soc. Am. B 30, 530 (2013).
    [CrossRef]

2013

2011

2010

2005

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

1992

1987

Agrawal, G. P.

Barozzi, M.

Blake, J. N.

Essiambre, R. J.

Fatome, J.

Garth, S. J.

Haelterman, M.

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

Huang, S. Y.

Jauslin, H. R.

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

Kim, B. Y.

Kozlov, V. V.

Millot, G.

J. Fatome, S. Pitois, P. Morin, and G. Millot, Opt. Express 18, 15311 (2010).
[CrossRef]

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

Morin, P.

Mumtaz, S.

Nuño, J.

Pask, C.

Picozzi, A.

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

Pitois, S.

J. Fatome, S. Pitois, P. Morin, and G. Millot, Opt. Express 18, 15311 (2010).
[CrossRef]

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

Shaw, H. J.

Turitsyn, K.

Vannucci, A.

Wabnitz, S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Evolution with distance ξ of the signal MPD S¯3(k) for two different sets of nonlinear coefficients. (a) Oscillations have different periods and ranges and (b) oscillations have almost the same period and coalesce at ξc=21 as marked by the dotted–dashed vertical line.

Fig. 2.
Fig. 2.

DOMA versus distance ξ for different input pump modal power distributions: P¯3(0)=0 (bold line), P¯3(0)=±0.2 (bold dashed–dotted line), P¯3(0)=±0.6 (thin line), and P¯3(0)=±1 (thin dashed–dotted line). (a) The input set of vectors covers the circle S2=0 [Fig. 3(a)]. (b) The input set covers the whole sphere [Fig. 4(a)].

Fig. 3.
Fig. 3.

Poincaré sphere distributions of (a) input and (b) output unitary modal Stokes vectors (black dots) in the case of full modal attraction, P0=S0. The input signal modal Stokes lies on the circle S2=0. Black horizontal and vertical circles represent S3=0 and S2=0, respectively.

Fig. 4.
Fig. 4.

Poincaré sphere distribution of (a) input and (b) output unitary modal Stokes vectors for the case with modal attraction and P0=S0. Here the input signal modal Stokes vectors uniformly covers the sphere.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

iU˙n=23C01UmVnVm*exp(iΔβnuz)+Cnn(|Un|2+23|Vn|2)Un+C01(2|Um|2+23|Vm|2)Un,
P˙=P×(AI1P+BI1S+C1pI1U+C2pI2S),

Metrics