Abstract

We demonstrate tuning of double-coupled one-dimensional photonic crystal cavities by their out-of-plane nanomechanical deformations. The coupled cavities are pulled by the vertical electrostatic force generated by the potential difference between the device layer and the handle layer in a silicon-on-insulator chip, and the induced deformations are analyzed by the finite element method. Applied with a voltage of 12 V, the cavities obtain a redshift of 0.0405 nm (twice the linewidth) for their second-order odd resonance mode and a blueshift of 0.0635 nm (three times the linewidth) for their second-order even resonance mode, which are mainly attributed to out-of-plane relative displacement. Out-of-plane tuning of coupled cavities does not need actuators and corresponding circuits; thus the device is succinct and compact. This working principle can be potentially applied in chip-level optoelectronic devices, such as sensors, switches, routers, and tunable filters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Nano Lett. 12, 2299 (2012).
    [CrossRef]
  2. Y. Akihama, Y. Kanamori, and K. Hane, Opt. Express 19, 23658 (2011).
    [CrossRef]
  3. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, Opt. Express 16, 14421 (2008).
    [CrossRef]
  4. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, Opt. Express 18, 22232 (2010).
    [CrossRef]
  5. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, Opt. Lett. 35, 2517 (2010).
    [CrossRef]
  6. F. Tian, G. Zhou, F. S. Chau, J. Deng, Y. Du, X. Tang, R. Akkipeddi, and Y. C. Loke, Opt. Express 20, 27697 (2012).
    [CrossRef]
  7. F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, Appl. Phys. Lett. 102, 081101 (2013).
    [CrossRef]
  8. Y. Kanamori, T. Kitani, and K. Hane, Appl. Phys. Lett. 90, 031911 (2007).
    [CrossRef]
  9. L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, Appl. Phys. Lett. 98, 211120 (2011).
    [CrossRef]
  10. M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeimi, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, Opt. Express 19, 24905 (2011).
    [CrossRef]
  11. Q. Quan, P. B. Deotare, and M. Loncar, Appl. Phys. Lett. 96, 203102 (2010).
    [CrossRef]
  12. Q. Quan and M. Loncar, Opt. Express 19, 18529 (2011).
    [CrossRef]

2013

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, Appl. Phys. Lett. 102, 081101 (2013).
[CrossRef]

2012

2011

2010

2008

2007

Y. Kanamori, T. Kitani, and K. Hane, Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Akihama, Y.

Akkipeddi, R.

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, Appl. Phys. Lett. 102, 081101 (2013).
[CrossRef]

F. Tian, G. Zhou, F. S. Chau, J. Deng, Y. Du, X. Tang, R. Akkipeddi, and Y. C. Loke, Opt. Express 20, 27697 (2012).
[CrossRef]

Blasius, T. D.

Chau, F. S.

Chew, X.

Cohen, J.

Deng, J.

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Du, Y.

Dundar, M. A.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, Appl. Phys. Lett. 98, 211120 (2011).
[CrossRef]

Fiore, A.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, Appl. Phys. Lett. 98, 211120 (2011).
[CrossRef]

Hane, K.

Kanamori, Y.

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, Appl. Phys. Lett. 90, 031911 (2007).
[CrossRef]

Kokubun, Y.

Loke, Y. C.

Loncar, M.

Q. Quan and M. Loncar, Opt. Express 19, 18529 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Mayer Alegre, T. P.

Meenehan, S.

Midolo, L.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, Appl. Phys. Lett. 98, 211120 (2011).
[CrossRef]

Notzel, R.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, Appl. Phys. Lett. 98, 211120 (2011).
[CrossRef]

Painter, O.

Poot, M.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Nano Lett. 12, 2299 (2012).
[CrossRef]

Quan, Q.

Q. Quan and M. Loncar, Opt. Express 19, 18529 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Safavi-Naeimi, A. H.

Stobbe, S.

Sun, X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Nano Lett. 12, 2299 (2012).
[CrossRef]

Takahashi, K.

Tang, H. X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Nano Lett. 12, 2299 (2012).
[CrossRef]

Tang, X.

Tian, F.

F. Tian, G. Zhou, F. S. Chau, J. Deng, and R. Akkipeddi, Appl. Phys. Lett. 102, 081101 (2013).
[CrossRef]

F. Tian, G. Zhou, F. S. Chau, J. Deng, Y. Du, X. Tang, R. Akkipeddi, and Y. C. Loke, Opt. Express 20, 27697 (2012).
[CrossRef]

van Veldhoven, P. J.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, Appl. Phys. Lett. 98, 211120 (2011).
[CrossRef]

Winger, M.

Wong, C. W.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Nano Lett. 12, 2299 (2012).
[CrossRef]

Yu, H.

Zheng, J.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Nano Lett. 12, 2299 (2012).
[CrossRef]

Zhou, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SEM image of the double coupled one-dimensional PCCs supported by the bended waveguides. (b) Schematic of the cross section along the center of coupled cavities. (c) Voltage is applied between the device layer and the handle layer, and the beams are bended by the electrostatic force.

Fig. 2.
Fig. 2.

(a) Deformation of the suspended structures simulated by the finite element method under an applied voltage of 12 V. Color bar shows the magnitudes of deformation in micrometers. (b) Schematic showing the cross section of the coupled cavity beams where respective displacement components are annotated. (c) Displacement components along the x and y axes versus the square applied voltage. (d) x and y components of the cavities’ relative displacement versus the squared applied voltage.

Fig. 3.
Fig. 3.

Measured wavelength shifts of the resonance peaks of the second-order (a) odd and (b) even modes driven by a voltage switching from 0 to 12 V, and the wavelength detunings of the second-order. (c) Odd and (d) even resonance modes under various applied voltages. Measured data from the two modes are fitted by the solid lines.

Fig. 4.
Fig. 4.

Transient response of the device under a square-wave voltage.

Metrics