Abstract

A method based on low rank and sparse decomposition is proposed for moving object detection by the fusion of visual and infrared video. The visual and infrared image sequences are decomposed into the joint low rank background term, the uncorrelated sparse moving nonobject term, and the common sparse moving object term via a joint minimization cost of nuclear norm, F norm, and l1 norm. This method provides a flexible framework that can easily fuse information from visual and infrared video. The prior fusion strategies are not required. The complementary information on visual and infrared images can be naturally fused in the procedure of object detection. The experimental results show that the proposed algorithm is effective.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared and visible image fusion using multiscale directional nonlocal means filter

Xiang Yan, Hanlin Qin, Jia Li, Huixin Zhou, Jing-guo Zong, and Qingjie Zeng
Appl. Opt. 54(13) 4299-4308 (2015)

Collaborative multicue fusion using the cross-diffusion process for salient object detection

Jin-Gang Yu, Changxin Gao, and Jinwen Tian
J. Opt. Soc. Am. A 33(3) 404-415 (2016)

Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition

Xiaoye Zhang, Yong Ma, Fan Fan, Ying Zhang, and Jun Huang
J. Opt. Soc. Am. A 34(8) 1400-1410 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription