Abstract

We report on a method for surface plasmon resonance (SPR) refractive index sensing based on direct time-domain measurements. An optical resonator is built around an SPR sensor, and its photon lifetime is measured as a function of loss induced by refractive index variations. The method does not rely on any spectroscopic analysis or direct intensity measurement. Time-domain measurements are practically immune to light intensity fluctuations and thus lead to high resolution. A proof of concept experiment is carried out in which a sensor response to liquid samples of different refractive indices is measured. A refractive index resolution of the current system, extrapolated from the reproducibility of cavity-decay time determinations over 133 s, is found to be about 105RIU. The possibility of long-term averaging suggests that measurements with a resolution better than 107RIU/Hz are within reach.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, Chem. Rev. 108, 462 (2008).
    [CrossRef]
  2. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).
  3. G. G. Nenninger, M. Piliarik, and J. Homola, Meas. Sci. Technol. 13, 2038 (2002).
    [CrossRef]
  4. C. J. Alleyne, A. G. Kirk, W. Y. Chien, and P. G. Charette, Opt. Express 16, 19493 (2008).
    [CrossRef]
  5. M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).
    [CrossRef]
  6. J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, Appl. Phys. B 78, 465 (2004).
    [CrossRef]
  7. H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
    [CrossRef]
  8. M. Yamamoto, Surface Plasmon Resonance (SPR) Theory: Tutorial, Rev. Polarogr. 48, 209 (2002).
  9. I. Thormahlen, J. Straub, and U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985).
    [CrossRef]
  10. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  11. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, Appl. Phys. B 75, 261 (2002).
    [CrossRef]

2010 (1)

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

2009 (1)

2008 (2)

2004 (1)

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, Appl. Phys. B 78, 465 (2004).
[CrossRef]

2002 (3)

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, Appl. Phys. B 75, 261 (2002).
[CrossRef]

G. G. Nenninger, M. Piliarik, and J. Homola, Meas. Sci. Technol. 13, 2038 (2002).
[CrossRef]

M. Yamamoto, Surface Plasmon Resonance (SPR) Theory: Tutorial, Rev. Polarogr. 48, 209 (2002).

1985 (1)

I. Thormahlen, J. Straub, and U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Alleyne, C. J.

Baer, D. S.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, Appl. Phys. B 75, 261 (2002).
[CrossRef]

Barnes, J. A.

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

Charette, P. G.

Chenevier, M.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, Appl. Phys. B 78, 465 (2004).
[CrossRef]

Chien, W. Y.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gagliardi, G.

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

Grigull, U.

I. Thormahlen, J. Straub, and U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985).
[CrossRef]

Gupta, M.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, Appl. Phys. B 75, 261 (2002).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Homola, J.

M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).
[CrossRef]

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef]

G. G. Nenninger, M. Piliarik, and J. Homola, Meas. Sci. Technol. 13, 2038 (2002).
[CrossRef]

J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kachanov, A. A.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, Appl. Phys. B 78, 465 (2004).
[CrossRef]

Kirk, A. G.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Li, R.

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

Loock, H.-P.

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

Morville, J.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, Appl. Phys. B 78, 465 (2004).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nenninger, G. G.

G. G. Nenninger, M. Piliarik, and J. Homola, Meas. Sci. Technol. 13, 2038 (2002).
[CrossRef]

O’Keefe, A.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, Appl. Phys. B 75, 261 (2002).
[CrossRef]

Oleschuk, R. D.

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

Paul, J. B.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, Appl. Phys. B 75, 261 (2002).
[CrossRef]

Piliarik, M.

M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).
[CrossRef]

G. G. Nenninger, M. Piliarik, and J. Homola, Meas. Sci. Technol. 13, 2038 (2002).
[CrossRef]

Romanini, D.

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, Appl. Phys. B 78, 465 (2004).
[CrossRef]

Straub, J.

I. Thormahlen, J. Straub, and U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985).
[CrossRef]

Thormahlen, I.

I. Thormahlen, J. Straub, and U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985).
[CrossRef]

Wächter, H.

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Yamamoto, M.

M. Yamamoto, Surface Plasmon Resonance (SPR) Theory: Tutorial, Rev. Polarogr. 48, 209 (2002).

Appl. Phys. B (3)

J. Morville, D. Romanini, A. A. Kachanov, and M. Chenevier, Appl. Phys. B 78, 465 (2004).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, Appl. Phys. B 75, 261 (2002).
[CrossRef]

Can. J. Chem. (1)

H.-P. Loock, J. A. Barnes, G. Gagliardi, R. Li, R. D. Oleschuk, and H. Wächter, Can. J. Chem. 88, 401 (2010).
[CrossRef]

Chem. Rev. (1)

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

I. Thormahlen, J. Straub, and U. Grigull, J. Phys. Chem. Ref. Data 14, 933 (1985).
[CrossRef]

Meas. Sci. Technol. (1)

G. G. Nenninger, M. Piliarik, and J. Homola, Meas. Sci. Technol. 13, 2038 (2002).
[CrossRef]

Opt. Express (2)

Surface Plasmon Resonance (SPR) Theory: Tutorial, Rev. Polarogr. (1)

M. Yamamoto, Surface Plasmon Resonance (SPR) Theory: Tutorial, Rev. Polarogr. 48, 209 (2002).

Other (1)

J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Reflectivity (left axis) and slope of reflectivity (right axis) of the SPR chip as a function of refractive index: (lines) simulated data and (dots, triangles) experimental data at a wavelength of 1560 nm.

Fig. 2.
Fig. 2.

SPR CRDS sensor setup. Reflected beam, via optical circulator (OC), is used for laser frequency locking, while cavity transmitted beam is used for loss (time) measurements.

Fig. 3.
Fig. 3.

Cavity decay event recorded with only ambient air on the chip. Red line represents the exponential fit yielding a ring-down time τ=24.0±0.3ns. In the inset, the transmitted cavity modes are shown along a laser frequency scan.

Fig. 4.
Fig. 4.

Response of SPR CRDS sensor to refractive index changes (1000 decay averaging per point, acquisition time 33 s). In the blue inset, the average values of each step are plotted versus n.

Metrics