Abstract

We present optical designs allowing large mode area light guiding by ultrafast laser photoinscription of bulk fused silica. If usual concepts are based on large core and depressed cladding, evanescently coupled multicore waveguides with coherent mode superposition can be effective solutions, where the introduction of nanostructured defects determines additional polarization functions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106, 051101 (2009).
    [CrossRef]
  2. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, Opt. Lett. 29, 2626 (2004).
    [CrossRef]
  3. Y. Cheng, K. Sugioka, and K. Midorikawa, Opt. Lett. 29, 2007 (2004).
    [CrossRef]
  4. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, Opt. Lett. 37, 392 (2012).
    [CrossRef]
  5. C. Lecaplain, M. Baumgart, T. Schreiber, and A. Hideur, Opt. Express 19, 26742 (2011).
    [CrossRef]
  6. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, Opt. Express 18, 17651 (2010).
    [CrossRef]
  7. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 4546 (2012).
    [CrossRef]
  8. N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, Opt. Express 20, 17029 (2012).
    [CrossRef]
  9. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, Opt. Lett. 28, 55 (2003).
    [CrossRef]
  10. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, Opt. Lett. 29, 1840 (2004).
    [CrossRef]
  11. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, Opt. Lett. 36, 1587 (2011).
    [CrossRef]
  12. X. Long, J. Bai, W. Zhao, R. Stoian, R. Hui, and G. Cheng, Opt. Lett. 37, 3138 (2012).
    [CrossRef]
  13. M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, Opt. Lett. 34, 2876 (2009).
    [CrossRef]
  14. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, Opt. Lett. 30, 1479 (2005).
    [CrossRef]
  15. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, Opt. Express 18, 24809 (2010).
    [CrossRef]

2012

2011

2010

2009

M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, Opt. Lett. 34, 2876 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

2005

2004

2003

Abdou-Ahmed, M.

Ams, M.

Arezki, B.

Audouard, E.

Bai, J.

Baumgart, M.

Boukenter, A.

Burakov, I. M.

Cerullo, G.

Cheng, G.

Cheng, Y.

Chiodo, N.

Della Valle, G.

DeSantolo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Ebendorff-Heidepriem, H.

Fini, J. M.

Fleming, J.

Fuerbach, A.

Ghalmi, S.

Graf, T.

Gross, S.

Headley, C.

Hideur, A.

Hui, R.

Huignard, J.-P.

Huo, G.

Huot, N.

Ireland, M.

Jansen, F.

Jauregui, C.

Jha, A.

Jose, G.

Jovanovic, N.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

Kar, A.

Kawachi, M.

Kern, P.

Killi, A.

Kopf, D.

Kuan, K.

Labadie, L.

Lancaster, D. G.

Laporta, P.

Larat, C.

Lawrence, J. S.

Lecaplain, C.

Lederer, M.

Limpert, J.

Loiseaux, B.

Long, X.

Lopez, C.

Martin, G.

Masuda, M.

Mauclair, C.

Mermillod-Blondin, A.

Midorikawa, K.

Miese, C.

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

Mishchik, K.

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

Monberg, E.

Monro, T. M.

Morgner, U.

Nicholson, J. W.

Osellame, R.

Ouerdane, Y.

Parriaux, O.

Psaila, N.

Ramachandran, S.

Richardson, K.

Richardson, M.

Ródenas, A.

Rosenfeld, A.

Sanner, N.

Schreiber, T.

Shihoyama, K.

Spaleniak, I.

Stoian, R.

Stutzki, F.

Sugioka, K.

Svelto, O.

Taccheo, S.

Thomson, R.

Toyoda, K.

Tünnermann, A.

Vogel, M. M.

Voss, A.

Withford, M. J.

Zhao, W.

Zoubir, A.

J. Appl. Phys.

S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Slit-shaping type I guide in a-SiO2. Left, cross section in WL microscopy. Middle, PCM side image. Right, guided mode at 800 nm.

Fig. 2.
Fig. 2.

Illustration of tubular guiding. (a) Experimental trepanning scheme using beam engineering. (b)–(d) Example of various tubular guides (left, WL or SEM cross-section image; middle, PCM side image; right, guided modes). (b) Type I tubular waveguide (inset, middle, funnel-like tubular trace). (c) Type II tubular waveguide. (d) Examples of nanostructured claddings with different orientations.

Fig. 3.
Fig. 3.

(a) Multicore hexagonal design. (b) Photoinscribed hexagonal multicore arrangements with different cell spacings; end-face WL images. The spacing varies from left to right from 5 to 8 μm, in steps of 1 μm. The single type I waveguides are written with 130 mW, 140 fs pulses, at a scan velocity of 200μm/s on a length of 8.7 mm. (c) Near field modes of multi-core waveguides. (d) Finite element analysis simulation of multicore SM for (left) a spacing of 6 μm and single trace NA of 0.02, with (right) a transition toward MM for higher separation distances (8 μm) and particularly for higher NAs (0.04).

Fig. 4.
Fig. 4.

Multicore polarization guiding. (a) Design sketch; the inserted blue color marks type II traces and green represents type I waveguides. (b) WL image of the mixed multicore section with marked type II locations. (c), (d) Near-field modes for horizontally and vertically polarized injection. Type I length 8.7 mm and type II defect 7.2 mm. (e) Polarization extinction as a function of the nanostructured length. Inset, Anisotropic scattering (xx) from an xz nanoplane for the y-polarized field vector.

Metrics