Abstract

We present the characterization of the recently developed cavity enhanced amplitude modulation laser absorption spectroscopy (CEAMLAS) technique to measure dissipation within the evanescent field of a whispering-gallery mode resonator, and demonstrate the parallel use of CEAMLAS and the Pound–Drever–Hall measurement techniques to provide both dissipation and dispersive real-time microresonator measurements. Using an atomic force microscope tip, we introduce a controlled perturbation to the evanescent field of the resonator. In this case, dissipative sensing allows up to 16.8 dB sensitivity improvement over dispersive measurements, providing the possibility for enhanced sensitivity in application such as biomolecule detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
    [CrossRef]
  2. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
    [CrossRef]
  3. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
    [CrossRef]
  4. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
    [CrossRef]
  5. J. D. Swaim, J. Knittel, and W. P. Bowen, Appl. Phys. Lett. 99, 243109 (2011).
    [CrossRef]
  6. G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
    [CrossRef]
  7. M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
    [CrossRef]
  8. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  9. J. H. Chow, I. C. M. Littler, D. S. Rabeling, D. E. McClelland, and M. B. Gray, Opt. Express 16, 7726 (2008).
    [CrossRef]
  10. J. H. Chow, M. A. Taylor, T. T. Lam, J. Knittel, J. D. Sawtell-Rickson, M. B. Gray, D. E. McClelland, and W. P. Bowen, Opt. Express 20, 12622 (2012).
    [CrossRef]
  11. D. S. Rabeling, J. H. Chow, M. B. Gray, and D. E. McClelland, Opt. Express 18, 9314 (2010).

2012 (3)

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
[CrossRef]

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
[CrossRef]

J. H. Chow, M. A. Taylor, T. T. Lam, J. Knittel, J. D. Sawtell-Rickson, M. B. Gray, D. E. McClelland, and W. P. Bowen, Opt. Express 20, 12622 (2012).
[CrossRef]

2011 (2)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

J. D. Swaim, J. Knittel, and W. P. Bowen, Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

2010 (3)

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

D. S. Rabeling, J. H. Chow, M. B. Gray, and D. E. McClelland, Opt. Express 18, 9314 (2010).

2008 (2)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Anetsberger, G.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Arcizet, O.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Armani, A. M.

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
[CrossRef]

Arnold, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
[CrossRef]

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef]

Bowen, W. P.

Cheema, M. I.

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Chow, J. H.

Dantham, V. R.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gavartin, E.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Gorodetsky, M. L.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Gray, M. B.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hayat, A. A.

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
[CrossRef]

He, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Holler, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

Kippenberg, T. J.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Kirk, A. G.

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
[CrossRef]

Knittel, J.

Kolchenko, V.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
[CrossRef]

Kotthaus, J. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Lam, T. T.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Littler, I. C. M.

McClelland, D. E.

Mehrabani, S.

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Peter, Y.-A.

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y.-A. Peter, A. M. Armani, and A. G. Kirk, Opt. Express 20, 9098 (2012).
[CrossRef]

Rabeling, D. S.

Sawtell-Rickson, J. D.

Swaim, J. D.

J. D. Swaim, J. Knittel, and W. P. Bowen, Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Taylor, M. A.

Unterreithmeier, Q. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Vollmer, F.

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef]

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Weig, E. M.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Yang, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Appl. Phys. Lett. 101, 043704 (2012).
[CrossRef]

J. D. Swaim, J. Knittel, and W. P. Bowen, Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, Nat. Nanotechnol. 6, 428 (2011).
[CrossRef]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
[CrossRef]

Opt. Express (4)

Phys. Rev. A (1)

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, Phys. Rev. A 82, 061804(R) (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Microscope photograph of the experiment showing the microtoroid side on the AFM tip on the left side of the toroid and the fiber taper behind. The haziness of the image was due to scattering from the cantilever.

Fig. 2.
Fig. 2.

Laser, 1550 nm external cavity diode laser; PM, phase modulator; AM, amplitude modulator; ω PM , RF source at 130 MHz; ω AM , RF source at 85 MHz; mixer, double balanced RF mixer; T , microtoroid resonator; LPF, low pass filter; det, RF photo-receiver; and tip, AFM tip with PZT actuator.

Fig. 3.
Fig. 3.

(A) CEAMLAS error signal as the laser frequency is scanned across the WGM resonance. 0 MHz corresponds to the laser carrier being on resonance with the WGM mode. (B) CEAMLAS error signal as the laser is scanned across WGM resonance while the laser is current modulated at 16 kHz producing a large sinusoidal frequency modulation.

Fig. 4.
Fig. 4.

(A) Laser frequency actuation signal and (B) taper-WGM gap actuation voltage as the AFM tip is driven by a 30 nm square wave at 1 Hz.

Fig. 5.
Fig. 5.

(A) Trace (i) PDH error signal when the AFM tip is driven by a 1 kHz sine wave with amplitude 16 nm p-p. Trace (ii) PDH error signal when the AFM tip is stationary. (B) Trace (i) CEAMLAS error signal when the AFM tip is driven by a 1 kHz sine wave with amplitude 16 nm p-p. Trace (ii) CEAMLAS error signal when the AFM tip is stationary.

Metrics