Abstract

In fluorescence diffuse optical tomography (fDOT), the accuracy of reconstructed fluorescence distributions highly depends on the knowledge of the tissue optical heterogeneities for correct modeling of light propagation. Common approaches are to assume homogeneous optical properties or, when structural information is available, assign optical properties to various segmented organs, which is likely to result in inaccurate reconstructions. Furthermore, DOT based only on intensity (continuous wave-DOT) is a nonunique inverse problem, and hence, cannot be used to retrieve simultaneously maps of absorption and diffusion coefficients. We propose a method that reconstructs a single parameter from the excitation measurements, which is used in the fDOT problem to accurately recover fluorescence distribution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
    [CrossRef]
  2. A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imag. 24, 1377 (2005).
    [CrossRef]
  3. D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, J. Opt. Soc. Am. A 26, 919 (2009).
    [CrossRef]
  4. W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).
  5. L. Hervé, A. Koenig, A. Silva, M. Berger, J. Boutet, J. Dinten, P. Peltié, and P. Rizo, Appl. Opt. 46, 4896 (2007).
    [CrossRef]
  6. Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, Appl. Opt. 48, 1328 (2009).
    [CrossRef]
  7. S. Arridge and W. Lionheart, Opt. Lett. 23, 882 (1998).
    [CrossRef]
  8. L. Hervé, A. Koenig, and J.-M. Dinten, J. Opt. 13, 015702 (2011).
    [CrossRef]
  9. M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, Med. Phys. 22, 1779 (1995).
    [CrossRef]
  10. M. Schweiger, S. Arridge, and I. Nissilä, Phys. Med. Biol. 50, 2365 (2005).
    [CrossRef]

2011

L. Hervé, A. Koenig, and J.-M. Dinten, J. Opt. 13, 015702 (2011).
[CrossRef]

2010

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

2009

2007

2006

V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
[CrossRef]

2005

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imag. 24, 1377 (2005).
[CrossRef]

M. Schweiger, S. Arridge, and I. Nissilä, Phys. Med. Biol. 50, 2365 (2005).
[CrossRef]

1998

1995

M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef]

Arridge, S.

M. Schweiger, S. Arridge, and I. Nissilä, Phys. Med. Biol. 50, 2365 (2005).
[CrossRef]

S. Arridge and W. Lionheart, Opt. Lett. 23, 882 (1998).
[CrossRef]

M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef]

Barber, W.

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

Berger, M.

Boutet, J.

Brooks, D.

Delpy, D.

M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef]

Dinten, J.

Dinten, J.-M.

L. Hervé, A. Koenig, and J.-M. Dinten, J. Opt. 13, 015702 (2011).
[CrossRef]

Gulsen, G.

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, Appl. Opt. 48, 1328 (2009).
[CrossRef]

Hervé, L.

Hiraoka, M.

M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef]

Hyde, D.

Iwanczyk, J.

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

Koenig, A.

Lin, Y.

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, Appl. Opt. 48, 1328 (2009).
[CrossRef]

Lionheart, W.

Miller, E.

Nalcioglu, O.

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, Appl. Opt. 48, 1328 (2009).
[CrossRef]

Nissilä, I.

M. Schweiger, S. Arridge, and I. Nissilä, Phys. Med. Biol. 50, 2365 (2005).
[CrossRef]

Ntziachristos, V.

D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, J. Opt. Soc. Am. A 26, 919 (2009).
[CrossRef]

V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imag. 24, 1377 (2005).
[CrossRef]

Peltié, P.

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imag. 24, 1377 (2005).
[CrossRef]

Rizo, P.

Roeck, W.

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

Schulz, R.

Schweiger, M.

M. Schweiger, S. Arridge, and I. Nissilä, Phys. Med. Biol. 50, 2365 (2005).
[CrossRef]

M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef]

Silva, A.

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imag. 24, 1377 (2005).
[CrossRef]

Yan, H.

Annu. Rev. Biomed. Eng.

V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
[CrossRef]

Appl. Opt.

IEEE Trans. Med. Imag.

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imag. 24, 1377 (2005).
[CrossRef]

J. Opt.

L. Hervé, A. Koenig, and J.-M. Dinten, J. Opt. 13, 015702 (2011).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, Med. Phys. 22, 1779 (1995).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

M. Schweiger, S. Arridge, and I. Nissilä, Phys. Med. Biol. 50, 2365 (2005).
[CrossRef]

Technol. Cancer Res. Treat.

W. Barber, Y. Lin, J. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Technol. Cancer Res. Treat. 9, 45 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Simulation geometry showing three fluorescent targets (dark spheres), heart and lung shaped structures. (b) True and (c) reconstructed η. (d)–(h) Fluorescence distribution reconstructed using methods C1–C5, where the dark spheres represent the true solution.

Fig. 2.
Fig. 2.

Cross-sectional plots: (top) along the center of the two top fluorescent inclusions and (bottom) along the center of the bottom inclusion.

Tables (1)

Tables Icon

Table 1. Optical Properties for the Three Different Tissue Types Used in the Simulation

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

·κeΦe+μaeΦe=0,
·κfΦf+μafΦf=Φeh
Φe+2Rκen^·Φe=J,
Φf+2Rκfn^·Φf=0,
Γe,f=κe,fn^·Φe,f,
Γf=Ah.
2Ψe+ηeΨe=0,
2Ψf+ηfΨf=Ψehγfγe,
Ψe+2Rκen^·Ψe=γeJ,
Ψf+2Rκfn^·Ψf=0,
Γe,f=γe,fn^·Ψe,f,
ϒ=hγfγe.
Γe=F(ηe),
Γf=A(ϒ).

Metrics