Abstract

In-line fiber-optic microcells are fabricated by postprocessing NKT LMA10 photonic crystal fibers. The cells are suspended core (SC) elements created by locally inflating some of the air holes while the core is being tapered. Based on a SC microcell with six air holes, a cantilever beam accelerometer is demonstrated. The microcells could also be used as gain and absorption cells for amplifier and spectroscopy applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
    [CrossRef]
  2. Y. Zhu, H. Du, and R. Bise, Opt. Express 14, 3541 (2006).
    [CrossRef]
  3. L. Dong, B. K. Thomas, and L. Fu, Opt. Express 16, 16423 (2008).
    [CrossRef]
  4. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. A. Birks, Opt. Express 13, 6541 (2005).
    [CrossRef]
  5. R. M. Gerosa, D. H. Spadoti, L. D. S. Menezes, and C. J. de Matos, Opt. Express 19, 3124 (2011).
    [CrossRef]
  6. J. Ju, H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, Opt. Lett. 35, 3886 (2010).
    [CrossRef]
  7. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, Opt. Lett. 31, 2672 (2006).
    [CrossRef]
  8. Y. Wang, C. R. Liao, and D. N. Wang, Opt. Express 18, 18056 (2010).
    [CrossRef]
  9. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, Opt. Express 18, 25232 (2010).
    [CrossRef]
  10. F. Wang, S. W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
    [CrossRef]
  11. Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, IEEE Photon. Technol. Lett. 22, 296 (2010).
    [CrossRef]
  12. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, J. Lightwave Technol. 25, 3563 (2007).
    [CrossRef]
  13. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
  14. J. M. Gere and B. J. Goodno, Mechanics of Materials (CL-Engineering, 2009).
  15. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
    [CrossRef]

2012 (2)

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

2011 (2)

2010 (4)

2008 (1)

2007 (1)

2006 (2)

2005 (1)

1977 (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Bang, O.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

F. Wang, S. W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
[CrossRef]

Birks, T. A.

Bise, R.

de Matos, C. J.

Demokan, M. S.

Dong, L.

Du, H.

Eggleton, B. J.

Ferreira, M. S.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
[CrossRef]

Frazão, O.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
[CrossRef]

Fu, L.

Gere, J. M.

J. M. Gere and B. J. Goodno, Mechanics of Materials (CL-Engineering, 2009).

Gerosa, R. M.

Giessen, H.

Gissibl, T.

Goodno, B. J.

J. M. Gere and B. J. Goodno, Mechanics of Materials (CL-Engineering, 2009).

Hansen, O.

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Ho, H. L.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, IEEE Photon. Technol. Lett. 22, 296 (2010).
[CrossRef]

J. Ju, H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, Opt. Lett. 35, 3886 (2010).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, IEEE Photon. Technol. Lett. 22, 296 (2010).
[CrossRef]

Jin, W.

Ju, J.

Kuhlmey, B. T.

Lai, K.

Leon-Saval, S.

Leon-Saval, S. G.

Liao, C. R.

Liu, S.

J. Ju, H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, Opt. Lett. 35, 3886 (2010).
[CrossRef]

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, IEEE Photon. Technol. Lett. 22, 296 (2010).
[CrossRef]

Lobo Ribeiro, A. B.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
[CrossRef]

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Menezes, L. D. S.

Pricking, S.

Santos, J. L.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
[CrossRef]

Silva, R. M.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
[CrossRef]

Spadoti, D. H.

Stefani, A.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Thomas, B. K.

Vieweg, M.

Wadsworth, W.

Wadsworth, W. J.

Wang, D. N.

Wang, F.

Wang, Y.

Witkowska, A.

Wu, D. C.

Xiao, L.

Xuan, H. F.

Yuan, S. W.

Yuan, W.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Zhao, C. L.

Zhu, Y.

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

IEEE Photon. Technol. Lett. (2)

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, IEEE Photon. Technol. Lett. 22, 296 (2010).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (7)

Opt. Lett. (2)

Photonic Sens. (1)

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, Photonic Sens. 2, 118 (2012).
[CrossRef]

Other (1)

J. M. Gere and B. J. Goodno, Mechanics of Materials (CL-Engineering, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Selective opening of air-holes from PCF end. (b) Selective inflation of air holes by pressurizing the opened hole while the PCF is being heated and drawn. Photo on the left shows the side view of a microcell created by an electric arc discharge, while the one on the right is created by flame brushing. (c) Cross section of the microcell created by an arc discharge at two different locations, 1 and 2. (d) Measured near-field image at location 2 at 1550 nm.

Fig. 2.
Fig. 2.

(a) Setup for fabricating a microcell with in situ monitoring of its transmission. (b) Examples of SC microcells fabricated.

Fig. 3.
Fig. 3.

(a) Schematic of the SC within the microcell. (b) Photo of a device showing the gap between the two sections of the SC.

Fig. 4.
Fig. 4.

Optical power transmission coefficient versus offset at the cantilever beam free end (the effect of tilt and separation are included). Schematic and photo show the offset at the cantilever free end. Core on the right remains suspended by the struts.

Fig. 5.
Fig. 5.

Setup for testing the in-line accelerometer. DUT is the cantilever beam accelerometer.

Fig. 6.
Fig. 6.

(a) Oscilloscope traces showing the outputs from the piezoelectric (upper) and the fiber-optic (lower) accelerometers. Output from the optical receiver is amplified 30 times before being connected to the oscilloscope. (b) Magnitude of fiber-optic accelerometer output versus acceleration (obtained from the piezoelectric accelerometer). (c) Frequency response of the fiber-optic accelerometer. Inset graph: output spectrum when an acceleration of 10 mg (amplitude) at 100 Hz is applied.

Metrics