Abstract

In this Letter, a novel concept based on superresolution technique that enables the measurement of high gradient and deep topography objects using digital holographic (DH) microscopy is introduced. The major problem of DH systems is limited NA that prohibits the metrological characterization of object features of high frequencies. The proposed technique has the ability to extend spatial frequency spectrum of the measured topography by applying multidirectional plane wave illumination, which is experimentally realized with a grating. The technique recovers sample topography from the set of object waves with different object spectra that are converted into a set of topographies by using an algorithm which takes into account refraction. Application of this novel approach is experimentally validated by characterization of high gradient topography objects with maximum angle of tangent 65°.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Appl. Phys. Lett. 81, 3143 (2002).
    [CrossRef]
  2. L. Martínez-León and B. Javidi, Opt. Express 16, 161 (2008).
    [CrossRef]
  3. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, Opt. Express 16, 6785 (2008).
    [CrossRef]
  4. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, Appl. Opt. 45, 822 (2006).
    [CrossRef]
  5. V. Mico, O. Limon, A. Gur, Z. Zalevsky, and J. García, J. Opt. Soc. Am. A 25, 1115 (2008).
    [CrossRef]
  6. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, Opt. Express 16, 17107 (2008).
    [CrossRef]
  7. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
    [CrossRef]
  8. W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, Opt. Express 18, 11181 (2010).
    [CrossRef]
  9. W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
    [CrossRef]
  10. T. Kozacki, K. Liżewski, and J. Kostencka, Opt. Laser Technol. 49, 38 (2013).
    [CrossRef]
  11. T. Kozacki, M. Józwik, and K. Liżewski, Opt. Lett. 36, 4419 (2011).
    [CrossRef]
  12. M. Paturzo and P. Ferraro, Opt. Lett. 34, 3650 (2009).
    [CrossRef]

2013

T. Kozacki, K. Liżewski, and J. Kostencka, Opt. Laser Technol. 49, 38 (2013).
[CrossRef]

2011

T. Kozacki, M. Józwik, and K. Liżewski, Opt. Lett. 36, 4419 (2011).
[CrossRef]

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

2010

2009

2008

2006

2002

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Appl. Phys. Lett. 81, 3143 (2002).
[CrossRef]

Alexandrov, S. A.

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, Opt. Express 18, 11181 (2010).
[CrossRef]

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Appl. Phys. Lett. 81, 3143 (2002).
[CrossRef]

Brueck, S. R. J.

Coskun, A. F.

De Nicola, S.

Ferraro, P.

Finizio, A.

García, J.

García-Martínez, P.

Grilli, S.

Gur, A.

Gutzler, T.

Hillman, T. R.

Javidi, B.

Józwik, M.

Kostencka, J.

T. Kozacki, K. Liżewski, and J. Kostencka, Opt. Laser Technol. 49, 38 (2013).
[CrossRef]

Kozacki, T.

T. Kozacki, K. Liżewski, and J. Kostencka, Opt. Laser Technol. 49, 38 (2013).
[CrossRef]

T. Kozacki, M. Józwik, and K. Liżewski, Opt. Lett. 36, 4419 (2011).
[CrossRef]

Kuznetsova, Y.

Limon, O.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Appl. Phys. Lett. 81, 3143 (2002).
[CrossRef]

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Appl. Phys. Lett. 81, 3143 (2002).
[CrossRef]

Lizewski, K.

T. Kozacki, K. Liżewski, and J. Kostencka, Opt. Laser Technol. 49, 38 (2013).
[CrossRef]

T. Kozacki, M. Józwik, and K. Liżewski, Opt. Lett. 36, 4419 (2011).
[CrossRef]

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

Martínez-León, L.

Merola, F.

Mico, V.

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

Neumann, A.

Ozcan, A.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, Opt. Express 18, 11181 (2010).
[CrossRef]

Paturzo, M.

Sampson, D. D.

Sikora, U.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

Su, T.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, Opt. Express 18, 11181 (2010).
[CrossRef]

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Appl. Phys. Lett. 81, 3143 (2002).
[CrossRef]

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, Lab Chip 11, 1276 (2011).
[CrossRef]

Zalevsky, Z.

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, Appl. Phys. Lett. 81, 3143 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Object beam transfer in the transmission configuration of a DH microscope, in which an object is illuminated with three plane waves of different incidence angles.

Fig. 2.
Fig. 2.

Graphical illustration of propagation and filtering of object waves corresponding to 0 and ±1 diffraction orders.

Fig. 3.
Fig. 3.

Images of a measured HNA microlens (n=1.487) captured in the substrate plane 0: (a), (b) object beam intensity and (c), (d) interference pattern.

Fig. 4.
Fig. 4.

Object beams for a measured HNA microlens at the defocused plane 1: (a) intensity and (b) interference pattern.

Fig. 5.
Fig. 5.

Amplitude and phase distributions of the separated object waves propagated to the substrate plane for a measured HNA microlens: (a) amplitude, (b) phase for 0-order and (c) amplitude, and (d) phase for ±1 orders.

Fig. 6.
Fig. 6.

Reconstructed topography of HNA microlens: (a) contour map and (b) cross-section (0-order, solid line; ±1 orders, dashed line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

hTLRA(x+xs)=ψLF(x)(nk0x(x)kix(x)k02k0z(x)+nkiz(x))1,
xs=ψLF(x)(nkix(x)k02k0x(x)+nkix(x)k0z(x)k0x(x))1,

Metrics