Abstract

In this Letter, a novel concept based on superresolution technique that enables the measurement of high gradient and deep topography objects using digital holographic (DH) microscopy is introduced. The major problem of DH systems is limited NA that prohibits the metrological characterization of object features of high frequencies. The proposed technique has the ability to extend spatial frequency spectrum of the measured topography by applying multidirectional plane wave illumination, which is experimentally realized with a grating. The technique recovers sample topography from the set of object waves with different object spectra that are converted into a set of topographies by using an algorithm which takes into account refraction. Application of this novel approach is experimentally validated by characterization of high gradient topography objects with maximum angle of tangent 65°.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription