Abstract

This work is dedicated to the study of so-called fatigue effects upon nanosecond laser-induced damage of several crystalline materials and synthetic fused silica irradiated by multiple pulses. The obtained damage probability versus fluence and pulse number data are exploited to determine if the observed fatigue is due to statistics (the more often the material is irradiated, the higher the probability for it to be damaged) or to material modification under irradiation. Whereas 1064 nm irradiation seems to be responsible for statistic behavior, 355 nm irradiation generates material modifications in the case of synthetic fused silica.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Natoli, B. Bertussi, and M. Commandré, Opt. Lett. 30, 1315 (2005).
    [CrossRef]
  2. P. K. Bandyopadhyay and L. D. Merkle, J. Appl. Phys. 63, 1392 (1988).
    [CrossRef]
  3. “Lasers and laser-related equipment: test methods for laser-induced damage threshold,” ISO 21254 (International Organization for Standardization, 2011), Parts 1 and 2.
  4. A. E. Chmel, Mat. Sci. Eng. B 49, 175 (1997).
  5. M. Bass and H. H. Barrett, IEEE J. Quantum Electron. 8, 338 (1972).
    [CrossRef]
  6. O. N. Bosyi and O. M. Efimov, Quantum Electron. 26, 710 (1996).
  7. L. A. Emmert, M. Mero, and W. Rudolph, J. Appl. Phys. 108, 043523 (2010).
    [CrossRef]
  8. F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
    [CrossRef]
  9. L. Gallais, J. Natoli, and C. Amra, Opt. Express 10, 1465 (2002).
    [CrossRef]
  10. C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).
  11. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
    [CrossRef]
  12. A. V. Smith and B. T. Do, Appl. Opt. 47, 4812 (2008).
    [CrossRef]
  13. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Opt. Express 18, 26791 (2010).
    [CrossRef]
  14. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, Appl. Opt. 48, 4263 (2009).
    [CrossRef]
  15. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Appl. Opt. 50, 4509 (2011).
    [CrossRef]
  16. F. R. Wagner, G. Duchateau, A. Hildenbrand, J. Y. Natoli, and M. Commandré, Appl. Phys. Lett. 99, 231111 (2011).
    [CrossRef]

2012 (2)

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

2011 (2)

F. R. Wagner, G. Duchateau, A. Hildenbrand, J. Y. Natoli, and M. Commandré, Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Appl. Opt. 50, 4509 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (2)

A. V. Smith and B. T. Do, Appl. Opt. 47, 4812 (2008).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
[CrossRef]

2005 (1)

2002 (1)

1997 (1)

A. E. Chmel, Mat. Sci. Eng. B 49, 175 (1997).

1996 (1)

O. N. Bosyi and O. M. Efimov, Quantum Electron. 26, 710 (1996).

1988 (1)

P. K. Bandyopadhyay and L. D. Merkle, J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

1972 (1)

M. Bass and H. H. Barrett, IEEE J. Quantum Electron. 8, 338 (1972).
[CrossRef]

Akhouayri, H.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, Appl. Opt. 48, 4263 (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
[CrossRef]

Albrecht, H.

Amra, C.

Bandyopadhyay, P. K.

P. K. Bandyopadhyay and L. D. Merkle, J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

Barrett, H. H.

M. Bass and H. H. Barrett, IEEE J. Quantum Electron. 8, 338 (1972).
[CrossRef]

Bass, M.

M. Bass and H. H. Barrett, IEEE J. Quantum Electron. 8, 338 (1972).
[CrossRef]

Bertussi, B.

Bosyi, O. N.

O. N. Bosyi and O. M. Efimov, Quantum Electron. 26, 710 (1996).

Chmel, A. E.

A. E. Chmel, Mat. Sci. Eng. B 49, 175 (1997).

Commandré, M.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

F. R. Wagner, G. Duchateau, A. Hildenbrand, J. Y. Natoli, and M. Commandré, Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Appl. Opt. 50, 4509 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Opt. Express 18, 26791 (2010).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, Appl. Opt. 48, 4263 (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
[CrossRef]

J. Y. Natoli, B. Bertussi, and M. Commandré, Opt. Lett. 30, 1315 (2005).
[CrossRef]

Do, B. T.

Duchateau, G.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J. Y. Natoli, and M. Commandré, Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

Efimov, O. M.

O. N. Bosyi and O. M. Efimov, Quantum Electron. 26, 710 (1996).

Emmert, L. A.

L. A. Emmert, M. Mero, and W. Rudolph, J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

Gallais, L.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

L. Gallais, J. Natoli, and C. Amra, Opt. Express 10, 1465 (2002).
[CrossRef]

Gouldieff, C.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

Hildenbrand, A.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

F. R. Wagner, G. Duchateau, A. Hildenbrand, J. Y. Natoli, and M. Commandré, Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Appl. Opt. 50, 4509 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Opt. Express 18, 26791 (2010).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, Appl. Opt. 48, 4263 (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
[CrossRef]

Jensen, L.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

Mende, M.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

Merkle, L. D.

P. K. Bandyopadhyay and L. D. Merkle, J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

Natoli, J.

Natoli, J. Y.

Natoli, J.-Y.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Appl. Opt. 50, 4509 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Opt. Express 18, 26791 (2010).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
[CrossRef]

Ristau, D.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

Rudolph, W.

L. A. Emmert, M. Mero, and W. Rudolph, J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

Smith, A. V.

Théodore, F.

Wagner, F.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

Wagner, F. R.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

F. R. Wagner, G. Duchateau, A. Hildenbrand, J. Y. Natoli, and M. Commandré, Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Appl. Opt. 50, 4509 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, and M. Commandré, Opt. Express 18, 26791 (2010).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J. Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, Appl. Opt. 48, 4263 (2009).
[CrossRef]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

F. R. Wagner, G. Duchateau, A. Hildenbrand, J. Y. Natoli, and M. Commandré, Appl. Phys. Lett. 99, 231111 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Bass and H. H. Barrett, IEEE J. Quantum Electron. 8, 338 (1972).
[CrossRef]

J. Appl. Phys. (2)

P. K. Bandyopadhyay and L. D. Merkle, J. Appl. Phys. 63, 1392 (1988).
[CrossRef]

L. A. Emmert, M. Mero, and W. Rudolph, J. Appl. Phys. 108, 043523 (2010).
[CrossRef]

Mat. Sci. Eng. B (1)

A. E. Chmel, Mat. Sci. Eng. B 49, 175 (1997).

Opt. Eng. (2)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, Opt. Eng. 47, 083603 (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, Opt. Eng. 51, 121806 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J.-Y. Natoli, and D. Ristau, Proc. SPIE 8530, 85300T (2012).

Quantum Electron. (1)

O. N. Bosyi and O. M. Efimov, Quantum Electron. 26, 710 (1996).

Other (1)

“Lasers and laser-related equipment: test methods for laser-induced damage threshold,” ISO 21254 (International Organization for Standardization, 2011), Parts 1 and 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Analysis of 1000-on-1 Suprasil bulk damage data at 1064 nm (6 ns) from [9]. (a) Damage probability as a function of the number of pulses for different fluences. (b) Comparison between the p1 values obtained from the statistical law [Eq. (1), full red squares] and the experimental 1-on-1 damage probabilities (open black squares, presented with 68% confidence error bars [11]). Fit quality is represented by blue circles, and all fluences are normalized to the 1-on-1 damage threshold.

Fig. 2.
Fig. 2.

Analysis of 2000-on-1 KTP bulk damage data at 1064 nm using only monomode pulses. (a) Damage probability as a function of the number of pulses. (b) Comparison between the p1 values obtained from the statistical model [Eq. (1), full red squares] and the 1-on-1 probabilities (open black squares). Fit quality is given by the blue circles.

Fig. 3.
Fig. 3.

Damage probability versus the number of irradiating pulses for Suprasil bulk tested at 355 nm.

Fig. 4.
Fig. 4.

Number of pulses until damage as a function of fluence for (a) Suprasil bulk at 1064 nm, (b) KTP bulk in seeded laser mode at 1064 nm, and (c) Suprasil bulk at 355 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P(S)=1(1p1)S.
P(S)=1N=1S(1p1(N)),

Metrics