Abstract

Silicon waveguide asymmetric Y junction mode multiplexers and demultiplexers are demonstrated for applications in on-chip mode-division multiplexing (MDM). We measure demultiplexed crosstalk as low as 30dB, <9dB over the C band, and insertion loss <1.5dB for multimode links up to 1.2 mm in length. The frequency response of these devices is shown to depend upon Y junction angle and multimode interconnect length. Interference effects are shown to be advantageous for low-crosstalk MDM, even while using compact Y junctions designed to be outside the mode-sorting regime.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription