Abstract

We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO3 optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm βBaB2O4 is applied for Type I (ooe) intracavity SHG and SFG, and then femtosecond laser pulses over 610nm668nm from SFG and 716nm970nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450nm2200nm and 2250nm4000nm, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, Appl. Phys. Lett. 89, 251116 (2006).
    [CrossRef]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  3. A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
    [CrossRef]
  4. A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, Opt. Lett. 33, 2650 (2008).
    [CrossRef]
  5. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
    [CrossRef]
  6. K. Koch, G. T. Moore, and E. C. Cheung, J. Opt. Soc. Am. B 12, 2268 (1995).
    [CrossRef]
  7. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).
    [CrossRef]
  8. T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, Opt. Express 17, 14229 (2009).
    [CrossRef]
  9. S. Chaitanya Kumar, O. Kimmelma, and M. Ebrahim-Zadeh, Opt. Lett. 37, 1577 (2012).
    [CrossRef]
  10. C. Cleff, J. Epping, P. Gross, and C. Fallnich, Appl. Phys. B 103, 795 (2011).
    [CrossRef]
  11. R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
    [CrossRef]
  12. J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
    [CrossRef]
  13. A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
    [CrossRef]

2012 (1)

2011 (1)

C. Cleff, J. Epping, P. Gross, and C. Fallnich, Appl. Phys. B 103, 795 (2011).
[CrossRef]

2009 (1)

2008 (1)

2006 (2)

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, Appl. Phys. Lett. 89, 251116 (2006).
[CrossRef]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

1997 (1)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

1996 (2)

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

1995 (1)

1993 (1)

1971 (1)

J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
[CrossRef]

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Chaitanya Kumar, S.

Cheung, E. C.

Cleff, C.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, Appl. Phys. B 103, 795 (2011).
[CrossRef]

Ebrahim-Zadeh, M.

Ellingson, R. J.

Epping, J.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, Appl. Phys. B 103, 795 (2011).
[CrossRef]

Esteban-Martin, A.

Falk, J.

J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
[CrossRef]

Fallnich, C.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, Appl. Phys. B 103, 795 (2011).
[CrossRef]

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Gross, P.

C. Cleff, J. Epping, P. Gross, and C. Fallnich, Appl. Phys. B 103, 795 (2011).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Jurna, M.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, Appl. Phys. Lett. 89, 251116 (2006).
[CrossRef]

Kimmelma, O.

Kobayashi, T.

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

Koch, K.

Kokabee, O.

Kornaszewski, L.

Korterik, J. P.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, Appl. Phys. Lett. 89, 251116 (2006).
[CrossRef]

Lamour, T. P.

Limpert, J.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).
[CrossRef]

Mao, H. W.

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

Moore, G. T.

Offerhaus, H. L.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, Appl. Phys. Lett. 89, 251116 (2006).
[CrossRef]

Otto, C.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, Appl. Phys. Lett. 89, 251116 (2006).
[CrossRef]

Reid, D. T.

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).
[CrossRef]

Schreiber, T.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).
[CrossRef]

Shirakawa, A.

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

Sun, J. H.

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
[CrossRef]

Tunnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).
[CrossRef]

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Phys. B (1)

C. Cleff, J. Epping, P. Gross, and C. Fallnich, Appl. Phys. B 103, 795 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, Appl. Phys. Lett. 89, 251116 (2006).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Falk, IEEE J. Quantum Electron. 7, 230 (1971).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, IEEE J. Sel. Top. Quantum Electron. 12, 233 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

A. Shirakawa, H. W. Mao, and T. Kobayashi, Opt. Commun. 123, 121 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of intracavity SHG and SFG in MgO:PPLN OPO. M1–M6, mirrors; L1–L3, lenses; HWP, half-wave plate; PBS, polarizing beam-splitter; BS, beam-splitter.

Fig. 2.
Fig. 2.

(a) Output powers of the signal and idler, (b) autocorrelation of signal at 1514 nm, (c) spectrum tuning of the signal from 1450 to 2200 nm, and (d) spectrum tuning of the idler from 2250 to 4000 nm.

Fig. 3.
Fig. 3.

(a) Spectrum tuning of the intracavity SHG from 716 to 970 nm and (b) dependence of output power of intracavity SHG on wavelength. Inset: autocorrelation of SHG signal at 757 nm.

Fig. 4.
Fig. 4.

(a) Dependence of SFG (at 615 nm) output power on the OPO and SFG pump powers, at a fixed total input power of 2 W, (b) SFG (at 615 nm) power with an increase of SFG pump power at a fixed OPO pump power of 2 W, (c) SFG power dependence on wavelength at a fixed OPO pump power of 2 W and SFG pump power of 1 W, and (d) spectrum tuning of SFG from 610 to 668 nm.

Metrics