Abstract

We study the stimulated Raman emission of a high-Q polydimethylsiloxane (PDMS)-coated silica microsphere on a silicon chip. In this hybrid structure, as the thickness of the PDMS coating increases, the spatial distribution of the whispering gallery modes moves inside the PDMS layer, and the light emission switches from silica Raman lasing to PDMS Raman lasing. The Raman shift of the PDMS Raman laser is measured at 2900cm1, corresponding to the strongest Raman fingerprint of bulk PDMS material. The threshold for this PDMS Raman lasing is demonstrated to be as low as 1.3 mW. This type of Raman emission from a surface-coated high-Q microcavity not only provides a route for extending lasing wavelengths, but also shows potential for detecting specific analytes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
    [CrossRef]
  2. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
    [CrossRef]
  3. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
    [CrossRef]
  4. S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef]
  5. H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
    [CrossRef]
  6. H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
    [CrossRef]
  7. Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
    [CrossRef]
  8. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
    [CrossRef]
  9. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
    [CrossRef]
  10. R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, Opt. Lett. 37, 4762 (2012).
    [CrossRef]
  11. L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
    [CrossRef]
  12. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, Appl. Phys. Lett. 94, 231115 (2009).
    [CrossRef]
  13. C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
    [CrossRef]
  14. H. S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
    [CrossRef]
  15. Y. Deng, F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, Opt. Express 21, 4653 (2013).
    [CrossRef]
  16. H. C. Tapalian, J.-P. Laine, and P. A. Lane, IEEE Photon. Technol. Lett. 44, 1118 (2002).
    [CrossRef]
  17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef]
  18. T. Carmon and K. J. Vahala, Phys. Rev. Lett. 98, 123901 (2007).
    [CrossRef]
  19. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. 61, 163 (2007).
    [CrossRef]

2013 (1)

2012 (1)

2010 (5)

H. S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
[CrossRef]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

2009 (1)

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, Appl. Phys. Lett. 94, 231115 (2009).
[CrossRef]

2008 (2)

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

2007 (2)

T. Carmon and K. J. Vahala, Phys. Rev. Lett. 98, 123901 (2007).
[CrossRef]

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. 61, 163 (2007).
[CrossRef]

2004 (1)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

2003 (2)

H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

2002 (2)

H. C. Tapalian, J.-P. Laine, and P. A. Lane, IEEE Photon. Technol. Lett. 44, 1118 (2002).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

1994 (1)

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

1986 (1)

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Beck, T.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

Cai, D.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. 61, 163 (2007).
[CrossRef]

Campillo, A. J.

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

Carmon, T.

T. Carmon and K. J. Vahala, Phys. Rev. Lett. 98, 123901 (2007).
[CrossRef]

Chang, R. K.

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

Choi, H. S.

Chormaic, S. N.

Cohen, O.

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Coppola, S.

Deng, Y.

Dong, C.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Dong, C.-H.

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

Feng, X.-B.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

Ferraro, P.

Finizio, A.

Gaddam, V.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Gohn-Kreuz, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

Gong, Q.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Grilli, S.

Grossmann, T.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

Guo, G.-C.

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

Han, Z.-F.

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

Hauser, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

He, L.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, Appl. Phys. Lett. 94, 231115 (2009).
[CrossRef]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Hossein-Zadeh, M.

Jiang, X.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

Kalt, H.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

Karl, M.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

Kopetz, S.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. 61, 163 (2007).
[CrossRef]

Laine, J.-P.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, IEEE Photon. Technol. Lett. 44, 1118 (2002).
[CrossRef]

Lane, P. A.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, IEEE Photon. Technol. Lett. 44, 1118 (2002).
[CrossRef]

Lee, M.

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Leseman, Z. C.

Li, B.-B.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Li, Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

Lin, H.-B.

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

Liu, F.

Liu, Z.-P.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

Madugani, R.

Mappes, T.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

Min, B.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

Neyer, A.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. 61, 163 (2007).
[CrossRef]

Paniccia, M.

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Pask, H. M.

H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
[CrossRef]

Qian, S.-X.

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

Qin, Y.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

Rabe, E.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. 61, 163 (2007).
[CrossRef]

Randy, O.

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Ren, X.-F.

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

Riordan, J. D.

Rong, H.

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Sih, V.

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

Sun, F.-W.

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

Tapalian, H. C.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, IEEE Photon. Technol. Lett. 44, 1118 (2002).
[CrossRef]

Vahala, K. J.

T. Carmon and K. J. Vahala, Phys. Rev. Lett. 98, 123901 (2007).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

Vannahme, C.

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

Vespini, V.

Wang, Q.-Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Ward, J. M.

Xiao, L.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Xiao, Y.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, Appl. Phys. Lett. 94, 231115 (2009).
[CrossRef]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Xu, S.

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Yang, H.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

Yang, L.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, Appl. Phys. Lett. 94, 231115 (2009).
[CrossRef]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Yang, Y.

Zhang, X.

Zhu, J.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, Appl. Phys. Lett. 94, 231115 (2009).
[CrossRef]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Zou, C.-L.

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, Appl. Phys. Lett. 97, 211105 (2010).
[CrossRef]

T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, Appl. Phys. Lett. 96, 013303 (2010).
[CrossRef]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, Appl. Phys. Lett. 94, 231115 (2009).
[CrossRef]

C.-H. Dong, F.-W. Sun, C.-L. Zou, X.-F. Ren, G.-C. Guo, and Z.-F. Han, Appl. Phys. Lett. 96, 061106 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 10, 1219 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. C. Tapalian, J.-P. Laine, and P. A. Lane, IEEE Photon. Technol. Lett. 44, 1118 (2002).
[CrossRef]

Int. J. Electron. Commun. (1)

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, Int. J. Electron. Commun. 61, 163 (2007).
[CrossRef]

Nat. Photonics (1)

H. Rong, S. Xu, O. Cohen, O. Randy, M. Lee, V. Sih, and M. Paniccia, Nat. Photonics 2, 170 (2008).
[CrossRef]

Nature (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

S.-X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef]

H.-B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef]

T. Carmon and K. J. Vahala, Phys. Rev. Lett. 98, 123901 (2007).
[CrossRef]

Prog. Quantum Electron. (1)

H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Fabrication process of a PDMS-coated silica microsphere on a silicon wafer. (a) Top view optical image of a circular silica pad after lithography and hydrofluoric acid etching of silica. (b) Top view optical image of an undercut microdisk with a very thin supporting silicon pillar. (c) Top view optical image of an on-chip microsphere formed after CO2 laser reflow. (d) Side view optical image of a microsphere (before coating) under PDMS droplets created on a fiber taper. (e) Side view optical image of the microsphere during the coating process. (f) Side view optical image of the microsphere after PDMS coating.

Fig. 2.
Fig. 2.

Raman spectra with an increasing thickness of the coating PDMS layer. The inset images show the corresponding field distributions of the fundamental TE WGM of the PDMS-coated microcavity. The white arcs represent the boundaries of silica and PDMS. Here the thicknesses are estimated from the size of the PDMS droplets used for coating.

Fig. 3.
Fig. 3.

(a) Four Raman spectra with different excitation laser wavelengths. (b) The experimental PDMS Raman shift versus various excitation wavelengths. (c) The Raman spectrum of bulk PDMS material measured by a Raman spectrometer. In (a), the excitation and Raman lasing wavelength bands are marked with two shadowed rectangles.

Fig. 4.
Fig. 4.

PDMS Raman laser intensity versus input power.

Metrics