Abstract

We achieve high aspect-ratio laser ablation of silicon with a strong nonlinear dependence on pulse duration while using a power density 106 times less than the threshold for typical multiphoton-mediated ablation. This is especially counter-intuitive as silicon is nominally transparent to the modulated continuous wave Yb:fiber laser used in the experiments. We perform time-domain finite-element simulations of thermal dynamics to investigate thermo-optical coupling and link the observed machining to an intensity-thresholded runaway thermo-optically nonlinear process. This effect, cascaded absorption, is qualitatively different from ablation observed using nanosecond-duration pulses and is general enough to potentially facilitate high-quality, high aspect-ratio, and economical processing of many materials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. O’Neill and K. Li, IEEE J. Sel. Top. Quantum 15, 462 (2009).
    [CrossRef]
  2. D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).
  3. X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997).
    [CrossRef]
  4. B. Shiner, Nat. Photonics 2, 24 (2008).
    [CrossRef]
  5. D. Lowndes, G. Jellison, and R. Wood, Phys. Rev. B 26, 6747 (1982).
    [CrossRef]
  6. E. Palik, ed. Handbook of Optical Constants in Solids (Academic, 1988).
  7. S. Hendow and S. Shakir, Opt. Express 18, 10188 (2010).
    [CrossRef]
  8. K. Li and W. O’Neill, Int. J. Precis. Eng. Man. 13, 641 (2012).
    [CrossRef]
  9. Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
    [CrossRef]
  10. G. Jellison and D. Lowndes, Appl. Phys. Lett. 41, 594 (1982).
    [CrossRef]
  11. P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, Opt. Lett. 35, 646 (2010).
    [CrossRef]
  12. J. X. Z. Yu, P. J. L. Webster, B. Y. C. Leung, and J. M. Fraser, Proc. SPIE 7584, 75840W (2010).
    [CrossRef]
  13. W. Steen and J. Mazumder, Laser Material Processing (Springer-Verlag, 2010).
  14. J. X. Z. Yu, “Highly efficient thermal ablation of silicon and ablation in other materials,” MASc. Thesis (Queen’s University, 2011).
  15. C. Ong, H. Tan, and E. Sin, Mater. Sci. Eng. 79, 79 (1986).
    [CrossRef]
  16. A. Bell, RCA Rev. 40, 295 (1979).
  17. C. Glassbrenner and G. Slack, Phys. Rev. A 134, 1058 (1964).
    [CrossRef]
  18. S. Kimura and K. Terashima, J. Cryst. Growth 180, 323 (1997).
    [CrossRef]
  19. P. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).
    [CrossRef]
  20. H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
    [CrossRef]
  21. G. Arfken and H. Weber, Mathematical Methods for Physicists (Academic, 2005).
  22. H. Carslaw and J. Jaeger, Conduction of Heat in Solids, 2nd. ed. (Oxford University, 1984).

2012

K. Li and W. O’Neill, Int. J. Precis. Eng. Man. 13, 641 (2012).
[CrossRef]

2011

Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
[CrossRef]

2010

2009

W. O’Neill and K. Li, IEEE J. Sel. Top. Quantum 15, 462 (2009).
[CrossRef]

2008

B. Shiner, Nat. Photonics 2, 24 (2008).
[CrossRef]

1997

X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997).
[CrossRef]

S. Kimura and K. Terashima, J. Cryst. Growth 180, 323 (1997).
[CrossRef]

1986

P. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).
[CrossRef]

C. Ong, H. Tan, and E. Sin, Mater. Sci. Eng. 79, 79 (1986).
[CrossRef]

1982

D. Lowndes, G. Jellison, and R. Wood, Phys. Rev. B 26, 6747 (1982).
[CrossRef]

G. Jellison and D. Lowndes, Appl. Phys. Lett. 41, 594 (1982).
[CrossRef]

1980

H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

1979

A. Bell, RCA Rev. 40, 295 (1979).

1964

C. Glassbrenner and G. Slack, Phys. Rev. A 134, 1058 (1964).
[CrossRef]

Anderson, M. D.

Arfken, G.

G. Arfken and H. Weber, Mathematical Methods for Physicists (Academic, 2005).

Bauerle, D.

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

Bell, A.

A. Bell, RCA Rev. 40, 295 (1979).

Carslaw, H.

H. Carslaw and J. Jaeger, Conduction of Heat in Solids, 2nd. ed. (Oxford University, 1984).

Desai, P.

P. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997).
[CrossRef]

Forsman, A.

Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
[CrossRef]

Fraser, J. M.

J. X. Z. Yu, P. J. L. Webster, B. Y. C. Leung, and J. M. Fraser, Proc. SPIE 7584, 75840W (2010).
[CrossRef]

P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, Opt. Lett. 35, 646 (2010).
[CrossRef]

Gao, Y.

Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
[CrossRef]

Glassbrenner, C.

C. Glassbrenner and G. Slack, Phys. Rev. A 134, 1058 (1964).
[CrossRef]

Hendow, S.

Jaeger, J.

H. Carslaw and J. Jaeger, Conduction of Heat in Solids, 2nd. ed. (Oxford University, 1984).

Jellison, G.

D. Lowndes, G. Jellison, and R. Wood, Phys. Rev. B 26, 6747 (1982).
[CrossRef]

G. Jellison and D. Lowndes, Appl. Phys. Lett. 41, 594 (1982).
[CrossRef]

Kimura, S.

S. Kimura and K. Terashima, J. Cryst. Growth 180, 323 (1997).
[CrossRef]

Leung, B. Y. C.

J. X. Z. Yu, P. J. L. Webster, B. Y. C. Leung, and J. M. Fraser, Proc. SPIE 7584, 75840W (2010).
[CrossRef]

P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, Opt. Lett. 35, 646 (2010).
[CrossRef]

Li, H.

H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

Li, K.

K. Li and W. O’Neill, Int. J. Precis. Eng. Man. 13, 641 (2012).
[CrossRef]

W. O’Neill and K. Li, IEEE J. Sel. Top. Quantum 15, 462 (2009).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997).
[CrossRef]

Lowndes, D.

G. Jellison and D. Lowndes, Appl. Phys. Lett. 41, 594 (1982).
[CrossRef]

D. Lowndes, G. Jellison, and R. Wood, Phys. Rev. B 26, 6747 (1982).
[CrossRef]

Mazumder, J.

W. Steen and J. Mazumder, Laser Material Processing (Springer-Verlag, 2010).

Mourou, G.

X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997).
[CrossRef]

O’Neill, W.

K. Li and W. O’Neill, Int. J. Precis. Eng. Man. 13, 641 (2012).
[CrossRef]

W. O’Neill and K. Li, IEEE J. Sel. Top. Quantum 15, 462 (2009).
[CrossRef]

Ong, C.

C. Ong, H. Tan, and E. Sin, Mater. Sci. Eng. 79, 79 (1986).
[CrossRef]

Shakir, S.

Shiner, B.

B. Shiner, Nat. Photonics 2, 24 (2008).
[CrossRef]

Sin, E.

C. Ong, H. Tan, and E. Sin, Mater. Sci. Eng. 79, 79 (1986).
[CrossRef]

Slack, G.

C. Glassbrenner and G. Slack, Phys. Rev. A 134, 1058 (1964).
[CrossRef]

Steen, W.

W. Steen and J. Mazumder, Laser Material Processing (Springer-Verlag, 2010).

Tan, H.

C. Ong, H. Tan, and E. Sin, Mater. Sci. Eng. 79, 79 (1986).
[CrossRef]

Tao, S.

Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
[CrossRef]

Terashima, K.

S. Kimura and K. Terashima, J. Cryst. Growth 180, 323 (1997).
[CrossRef]

Weber, H.

G. Arfken and H. Weber, Mathematical Methods for Physicists (Academic, 2005).

Webster, P. J. L.

P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, Opt. Lett. 35, 646 (2010).
[CrossRef]

J. X. Z. Yu, P. J. L. Webster, B. Y. C. Leung, and J. M. Fraser, Proc. SPIE 7584, 75840W (2010).
[CrossRef]

Wood, R.

D. Lowndes, G. Jellison, and R. Wood, Phys. Rev. B 26, 6747 (1982).
[CrossRef]

Wu, B.

Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
[CrossRef]

Yang, V. X. D.

Yu, J. X. Z.

P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, Opt. Lett. 35, 646 (2010).
[CrossRef]

J. X. Z. Yu, P. J. L. Webster, B. Y. C. Leung, and J. M. Fraser, Proc. SPIE 7584, 75840W (2010).
[CrossRef]

J. X. Z. Yu, “Highly efficient thermal ablation of silicon and ablation in other materials,” MASc. Thesis (Queen’s University, 2011).

Zhou, Y.

Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
[CrossRef]

Appl. Phys. Lett.

G. Jellison and D. Lowndes, Appl. Phys. Lett. 41, 594 (1982).
[CrossRef]

Appl. Surf. Sci.

Y. Zhou, B. Wu, S. Tao, A. Forsman, and Y. Gao, Appl. Surf. Sci. 257, 2886 (2011).
[CrossRef]

IEEE J. Quantum Electron.

X. Liu, D. Du, and G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum

W. O’Neill and K. Li, IEEE J. Sel. Top. Quantum 15, 462 (2009).
[CrossRef]

Int. J. Precis. Eng. Man.

K. Li and W. O’Neill, Int. J. Precis. Eng. Man. 13, 641 (2012).
[CrossRef]

J. Cryst. Growth

S. Kimura and K. Terashima, J. Cryst. Growth 180, 323 (1997).
[CrossRef]

J. Phys. Chem. Ref. Data

P. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).
[CrossRef]

H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

Mater. Sci. Eng.

C. Ong, H. Tan, and E. Sin, Mater. Sci. Eng. 79, 79 (1986).
[CrossRef]

Nat. Photonics

B. Shiner, Nat. Photonics 2, 24 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

C. Glassbrenner and G. Slack, Phys. Rev. A 134, 1058 (1964).
[CrossRef]

Phys. Rev. B

D. Lowndes, G. Jellison, and R. Wood, Phys. Rev. B 26, 6747 (1982).
[CrossRef]

Proc. SPIE

J. X. Z. Yu, P. J. L. Webster, B. Y. C. Leung, and J. M. Fraser, Proc. SPIE 7584, 75840W (2010).
[CrossRef]

RCA Rev.

A. Bell, RCA Rev. 40, 295 (1979).

Other

W. Steen and J. Mazumder, Laser Material Processing (Springer-Verlag, 2010).

J. X. Z. Yu, “Highly efficient thermal ablation of silicon and ablation in other materials,” MASc. Thesis (Queen’s University, 2011).

E. Palik, ed. Handbook of Optical Constants in Solids (Academic, 1988).

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

G. Arfken and H. Weber, Mathematical Methods for Physicists (Academic, 2005).

H. Carslaw and J. Jaeger, Conduction of Heat in Solids, 2nd. ed. (Oxford University, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Laser hole drilling in silicon, measured with ICI, for 6.7 μs pulses. Both imaging and machining beams are incident from the top of the image. Green lines are intended as a guide following the ablation front. Inset: bright-field microscopy image of the top surface after thermal machining. Inset scale bar is 25 μm (same scale as ICI image depth scale).

Fig. 2.
Fig. 2.

Ablation rate for constant fluence of 178J/cm2 (pulse energy 560 μJ) depends strongly on pulse duration. The error bars signify the statistical variation in cut rate from hole to hole (N=5).

Fig. 3.
Fig. 3.

Ablation rate as a function of pulse energy for various pulse durations. The significance of the threshold decreases with decreasing pulse duration.

Metrics