Abstract

We report on integrated erbium-doped waveguide lasers designed for silicon photonic systems. The distributed Bragg reflector laser cavities consist of silicon nitride waveguide and grating features defined by wafer-scale immersion lithography and a top erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The resulting inverted ridge waveguide yields high optical intensity overlap with the active medium for both the 0.98 μm pump (89%) and 1.5 μm laser (87%) wavelengths with a pump–laser intensity overlap of >93%. We obtain output powers of up to 5 mW and show lasing at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536, 1561, and 1596 nm).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008), pp. 147–153.
  2. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, Opt. Express 20, 11316 (2012).
    [CrossRef]
  3. H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, Opt. Express 13, 9460 (2005).
    [CrossRef]
  4. O. Boyraz and B. Jalali, Opt. Express 12, 5269 (2004).
    [CrossRef]
  5. T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
    [CrossRef]
  6. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, J. Opt. Soc. Am. B 27, 187 (2010).
    [CrossRef]
  7. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, Opt. Lett. 35, 73 (2010).
    [CrossRef]
  8. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, Opt. Lett. 35, 2394 (2010).
    [CrossRef]
  9. N. Sherwood-Droz and M. Lipson, Opt. Express 19, 17758 (2011).
    [CrossRef]
  10. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
    [CrossRef]
  11. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, IEEE J. Quantum Electron. 45, 454 (2009).
    [CrossRef]
  12. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef]
  13. T. Murphy, “Design, fabrication, and measurement of integrated Bragg grating optical filters,” Ph.D. dissertation (Department of Electrical Engineering and Computer Science, MIT, 2001).

2012 (1)

2011 (1)

2010 (3)

2009 (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, IEEE J. Quantum Electron. 45, 454 (2009).
[CrossRef]

2005 (1)

2004 (1)

1999 (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
[CrossRef]

1991 (1)

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
[CrossRef]

1971 (1)

Agazzi, L.

Ay, F.

Bernhardi, E. H.

Bessette, J. T.

Blauwendraat, T. P.

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, IEEE J. Quantum Electron. 45, 454 (2009).
[CrossRef]

Bowers, J. E.

Boyraz, O.

Bradley, J. D. B.

Cai, Y.

Camacho-Aguilera, R. E.

de Ridder, R. M.

Fang, A. W.

Geskus, D.

J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, J. Opt. Soc. Am. B 27, 187 (2010).
[CrossRef]

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, IEEE J. Quantum Electron. 45, 454 (2009).
[CrossRef]

Hattori, K.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
[CrossRef]

Jalali, B.

Khan, M. R. H.

Kimerling, L. C.

Kitagawa, T.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
[CrossRef]

Kobayashi, M.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
[CrossRef]

Kodama, S.

Laporta, P.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
[CrossRef]

Lipson, M.

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
[CrossRef]

Michel, J.

Murphy, T.

T. Murphy, “Design, fabrication, and measurement of integrated Bragg grating optical filters,” Ph.D. dissertation (Department of Electrical Engineering and Computer Science, MIT, 2001).

Ohmori, Y.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
[CrossRef]

Park, H.

Patel, N.

Pollnau, M.

Reed, G. T.

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008), pp. 147–153.

Roeloffzen, C. G. H.

Romagnoli, M.

Sherwood-Droz, N.

Shimizu, M.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
[CrossRef]

Stoffer, R.

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
[CrossRef]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
[CrossRef]

Taccheo, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
[CrossRef]

Tien, P. K.

van Wolferen, H. A. G. M.

Wörhoff, K.

Appl. Opt. (1)

Electron. Lett. (1)

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, Electron. Lett. 27, 334 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, IEEE J. Quantum Electron. 45, 454 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (Amsterdam) (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, Opt. Mater. (Amsterdam) 11, 269 (1999).
[CrossRef]

Other (2)

T. Murphy, “Design, fabrication, and measurement of integrated Bragg grating optical filters,” Ph.D. dissertation (Department of Electrical Engineering and Computer Science, MIT, 2001).

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008), pp. 147–153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Cross-sectional view of the laser waveguide structure. The calculated intensity distribution of the fundamental TE mode at (b) 980 and (c) 1550 nm.

Fig. 2.
Fig. 2.

(a) Top view diagram of the DBR laser cavity. (b) Plot of reflectivity at variation of sidewall etch widths on the chip by coupled mode theory. The small inset shows the SEM image of one of the gratings of the DBR laser.

Fig. 3.
Fig. 3.

Experimental setup of the measurement.

Fig. 4.
Fig. 4.

Output power versus on-chip pump power for the DBR laser at a 1561 nm laser wavelength.

Fig. 5.
Fig. 5.

Spectrum of the output laser within the C- and L- band.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ s / p = A I s / p d A I s / p d A active ( i j ) I i j ( s / p ) i j I i j ( s / p ) ,
Γ s p = A I p I s d A I p 2 d A I s 2 d A active ( i j ) I i j ( p ) I i j ( s ) i j I i j 2 ( p ) i j I i j 2 ( s ) ,

Metrics