Abstract

The thermal-birefringence-induced depolarization in terbium gallium garnet (TGG) ceramics has been investigated experimentally. The depolarization ratio of 6.1×104 has been observed at the maximum input power of 117 W cw, which corresponds to a normalized laser power of p=0.14. As predicted by the previously proposed theory, the amount of depolarization ratio and its slope with respect to the laser power of the ceramic TGG was approximately the same as that previously reported for high-quality-cut 111 single crystal.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).
    [CrossRef]
  2. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Rev. Laser Eng. 35, 806 (2007).
  3. E. A. Khazanov, Proc. SPIE 4968, 115 (2003).
  4. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, Opt. Express 19, 15181 (2011).
    [CrossRef]
  5. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
    [CrossRef]
  6. E. A. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, Appl. Opt. 41, 483 (2002).
    [CrossRef]
  7. E. A. Khazanov, Appl. Opt. 43, 1907 (2004).
    [CrossRef]
  8. M. A. Kagan and E. A. Khazanov, IEEE J. Quantum Electron. 33, 876 (2003).
    [CrossRef]
  9. E. A. Khazanov, Opt. Lett. 27, 716 (2002).
    [CrossRef]
  10. M. A. Kagan and E. A. Khazanov, Appl. Opt. 43, 6030 (2004).
    [CrossRef]
  11. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, Opt. Lett. 27, 234 (2002).
    [CrossRef]
  12. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 37, 633 (2007).
    [CrossRef]
  13. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, Opt. Express 13, 5983 (2005).
    [CrossRef]
  14. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, J. Opt. Soc. Am. B 28, 1409 (2011).
    [CrossRef]
  15. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, J. Opt. Soc. Am. B 29, 786 (2012).
    [CrossRef]
  16. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, Opt. Express 20, 29531 (2012).
    [CrossRef]
  17. I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).
  18. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, Appl. Opt. 40, 366 (2001).
    [CrossRef]

2012 (2)

2011 (2)

2007 (3)

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).
[CrossRef]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Rev. Laser Eng. 35, 806 (2007).

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 37, 633 (2007).
[CrossRef]

2005 (1)

2004 (2)

2003 (2)

E. A. Khazanov, Proc. SPIE 4968, 115 (2003).

M. A. Kagan and E. A. Khazanov, IEEE J. Quantum Electron. 33, 876 (2003).
[CrossRef]

2002 (3)

2001 (1)

1999 (1)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[CrossRef]

Andreev, N.

Aung, Y. L.

Bulkanov, A.

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Byer, R. L.

Clubley, D.

Fejer, M. M.

Fujimoto, Y.

Fujita, H.

Furuse, H.

Gustafson, E. K.

Hennawi, J.

Ikesue, A.

Ivanov, I.

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Iwamoto, A.

Kagan, M. A.

M. A. Kagan and E. A. Khazanov, Appl. Opt. 43, 6030 (2004).
[CrossRef]

M. A. Kagan and E. A. Khazanov, IEEE J. Quantum Electron. 33, 876 (2003).
[CrossRef]

Kan, H.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).
[CrossRef]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Rev. Laser Eng. 35, 806 (2007).

Kawanaka, J.

Kawashima, T.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Rev. Laser Eng. 35, 806 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).
[CrossRef]

Khazanov, E.

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Khazanov, E. A.

Kinoshita, H.

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[CrossRef]

Kurimura, S.

Lupei, V.

Mansell, J. D.

Mehl, O.

Mikami, K.

Miyanaga, N.

Mukhin, I.

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Mukhin, I. B.

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 37, 633 (2007).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, Opt. Express 13, 5983 (2005).
[CrossRef]

Nagata, Y.

Nakatsuka, M.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).
[CrossRef]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Rev. Laser Eng. 35, 806 (2007).

Nozawa, H.

Palashov, O.

E. A. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, Appl. Opt. 41, 483 (2002).
[CrossRef]

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Palashov, O. V.

Popov, P.

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Poteomkin, A.

Reitze, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[CrossRef]

Reitze, D. H.

Sato, Y.

Sergeev, A.

Shoji, I.

Snetkov, I. L.

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 37, 633 (2007).
[CrossRef]

Starobor, A. V.

Taira, T.

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[CrossRef]

Tokita, S.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Rev. Laser Eng. 35, 806 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Opt. Express 15, 11255 (2007).
[CrossRef]

Tsubakimoto, K.

Tsvetkov, V.

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Yagi, H.

Yanagitani, T.

Yasuhara, R.

Yoshida, H.

Yoshida, K.

Yoshida, S.

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, Appl. Opt. 40, 366 (2001).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[CrossRef]

Zheleznov, D. S.

Appl. Opt. (4)

IEEE J. Quantum Electron. (3)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[CrossRef]

M. A. Kagan and E. A. Khazanov, IEEE J. Quantum Electron. 33, 876 (2003).
[CrossRef]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 37, 633 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

E. A. Khazanov, Proc. SPIE 4968, 115 (2003).

Rev. Laser Eng. (1)

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, Rev. Laser Eng. 35, 806 (2007).

Other (1)

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, Conference Paper, The European Conference on Lasers and Electro-Optics (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup for the thermal birefringence measurement of TGG ceramics. The inset figure shows the input beam profile.

Fig. 2.
Fig. 2.

Experimental results of depolarization ratios γ and γflat as a function of the normalized power p. Filled circles show the results for TGG ceramics. The filled squares show the results for a TGG crystal of the orientation 111 [6]. The filled triangles show the results for a TGG crystal of the orientation 001 with optimization of the angle of incidence [6]. The open triangles show the depolarization ratio for a TGG crystal of the orientation 001 without optimization [6]. The solid and dashed lines show the theoretical curves obtained using Eq. (1). The upper axis shows the input laser power. This axis is used only for the TGG ceramic sample.

Fig. 3.
Fig. 3.

Image of the spatial profile of the depolarized beam after transmission through TGG ceramics at an input laser power of 117 W.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ=196X2p2,
p=La0PQλκ.
Q=(1LdLdT)n0341+ν1ν(p11p12).

Metrics