Abstract

Energy transfer, which affects the entire performance of luminescent material, has been generally treated as an averaged parameter by assuming the host material to be a homogeneous continuum. However, energy transfer should be investigated in association with the crystallographic local structure around an activator site. To accomplish this, we established an analytical model and derived comprehensive rate equations, elucidating the relationship between the local structure and energy transfer behavior of La4xCaxSi12O3+xN18x:Eu2+, which is a recently discovered luminescent material for use in light-emitting diodes. Using the rate-equation model with the assistance of particle swarm optimization, the full-scale decay curves of donors and acceptors located at different crystallographic sites was computed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
    [CrossRef]
  2. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
    [CrossRef]
  3. C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
    [CrossRef]
  4. T. Seto, N. Kijima, and N. Hirosaki, ECS Trans. 25, 247 (2009).
    [CrossRef]
  5. K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, Appl. Phys. Lett. 95, 121903 (2009).
    [CrossRef]
  6. D. Ahn, N. Shin, and K.-S. Sohn, J. Electrochem. Soc. 156, J242 (2009).
    [CrossRef]
  7. W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
    [CrossRef]
  8. B. Di Bartolo, in Energy Transfer Processes in Condensed Matter, B. Di Bartolo and A. Karipidou, eds. (Plenum, 1984), p. 103.
  9. J. Kennedy and R. Eberhart, in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1995), p. 1942.
  10. P. Dorenbos, Phys. Rev. B 62, 15650 (2000).
  11. R. Loudon, The Quantum Theory of Light (Oxford University, 1973).
  12. W. E. Boyce and R. C. Diprima, Elementary Differential Equations and Boundary Value Problems (Wiley, 1986).

2012 (1)

W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
[CrossRef]

2009 (4)

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

T. Seto, N. Kijima, and N. Hirosaki, ECS Trans. 25, 247 (2009).
[CrossRef]

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, Appl. Phys. Lett. 95, 121903 (2009).
[CrossRef]

D. Ahn, N. Shin, and K.-S. Sohn, J. Electrochem. Soc. 156, J242 (2009).
[CrossRef]

2005 (2)

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
[CrossRef]

2000 (1)

P. Dorenbos, Phys. Rev. B 62, 15650 (2000).

Ahn, D.

D. Ahn, N. Shin, and K.-S. Sohn, J. Electrochem. Soc. 156, J242 (2009).
[CrossRef]

Baumann, V.

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

Boyce, W. E.

W. E. Boyce and R. C. Diprima, Elementary Differential Equations and Boundary Value Problems (Wiley, 1986).

de With, G.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
[CrossRef]

Delsing, A. C. A.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
[CrossRef]

Di Bartolo, B.

B. Di Bartolo, in Energy Transfer Processes in Condensed Matter, B. Di Bartolo and A. Karipidou, eds. (Plenum, 1984), p. 103.

Diprima, R. C.

W. E. Boyce and R. C. Diprima, Elementary Differential Equations and Boundary Value Problems (Wiley, 1986).

Dorenbos, P.

P. Dorenbos, Phys. Rev. B 62, 15650 (2000).

Eberhart, R.

J. Kennedy and R. Eberhart, in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1995), p. 1942.

Hecht, C.

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

Hintzen, H. T.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
[CrossRef]

Hirosaki, N.

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, Appl. Phys. Lett. 95, 121903 (2009).
[CrossRef]

T. Seto, N. Kijima, and N. Hirosaki, ECS Trans. 25, 247 (2009).
[CrossRef]

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Hong, K.-P.

W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
[CrossRef]

Kennedy, J.

J. Kennedy and R. Eberhart, in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1995), p. 1942.

Kijima, N.

T. Seto, N. Kijima, and N. Hirosaki, ECS Trans. 25, 247 (2009).
[CrossRef]

Kimoto, K.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Lee, S.

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, Appl. Phys. Lett. 95, 121903 (2009).
[CrossRef]

Li, Y. Q.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University, 1973).

Mitomo, M.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Park, W. B.

W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
[CrossRef]

Pyo, M.

W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
[CrossRef]

Schmedt auf der Günne, J.

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

Schmidt, P. J.

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

Schnick, W.

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

Sekiguchi, T.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Seto, T.

T. Seto, N. Kijima, and N. Hirosaki, ECS Trans. 25, 247 (2009).
[CrossRef]

Shin, N.

W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
[CrossRef]

D. Ahn, N. Shin, and K.-S. Sohn, J. Electrochem. Soc. 156, J242 (2009).
[CrossRef]

Sohn, K.-S.

W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
[CrossRef]

D. Ahn, N. Shin, and K.-S. Sohn, J. Electrochem. Soc. 156, J242 (2009).
[CrossRef]

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, Appl. Phys. Lett. 95, 121903 (2009).
[CrossRef]

Stadler, F.

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

Suehiro, T.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Xie, R.-J.

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, Appl. Phys. Lett. 95, 121903 (2009).
[CrossRef]

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Yamamoto, Y.

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Adv. Funct. Mater. (1)

W. B. Park, N. Shin, K.-P. Hong, M. Pyo, and K.-S. Sohn, Adv. Funct. Mater. 22, 2258 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, Appl. Phys. Lett. 95, 121903 (2009).
[CrossRef]

N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, Appl. Phys. Lett. 86, 211905 (2005).
[CrossRef]

Chem. Mater. (2)

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, Chem. Mater. 17, 3242 (2005).
[CrossRef]

C. Hecht, F. Stadler, P. J. Schmidt, J. Schmedt auf der Günne, V. Baumann, and W. Schnick, Chem. Mater. 21, 1595 (2009).
[CrossRef]

ECS Trans. (1)

T. Seto, N. Kijima, and N. Hirosaki, ECS Trans. 25, 247 (2009).
[CrossRef]

J. Electrochem. Soc. (1)

D. Ahn, N. Shin, and K.-S. Sohn, J. Electrochem. Soc. 156, J242 (2009).
[CrossRef]

Phys. Rev. B (1)

P. Dorenbos, Phys. Rev. B 62, 15650 (2000).

Other (4)

R. Loudon, The Quantum Theory of Light (Oxford University, 1973).

W. E. Boyce and R. C. Diprima, Elementary Differential Equations and Boundary Value Problems (Wiley, 1986).

B. Di Bartolo, in Energy Transfer Processes in Condensed Matter, B. Di Bartolo and A. Karipidou, eds. (Plenum, 1984), p. 103.

J. Kennedy and R. Eberhart, in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1995), p. 1942.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Two different La/Ca sites exhibiting bond lengths between La/Ca and O/N (right La/Ca1 and left La/Ca2).

Fig. 2.
Fig. 2.

TRPL spectra and their Gaussian deconvolution.

Fig. 3.
Fig. 3.

(a) Experimental decay data (red open circle for acceptor detected at 560 nm and black open square for donor detected at 500 nm) and the calculated rate-equation model (red and black solid lines for acceptor and donor, respectively). (b) Time evolution for the excited-state populations normalized by the total number density of Eu2+ activators.

Tables (1)

Tables Icon

Table 1. Parameters as Estimated from PSO-Based Least-Square Fitting

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dρLa/Ca1edt=GρLa/Ca1gkLa/Ca1ρLa/Ca1eΩLa/Ca1La/Ca2ρLa/Ca1eρLa/Ca2gΩLa/Ca1La/Ca1ρLa/Ca1eρ¯La/Ca1gΩLa/Ca1La/Ca2ρLa/Ca1eρ¯La/Ca2g,dρLa/Ca2edt=GρLa/Ca2gkLa/Ca2ρLa/Ca2e+ΩLa/Ca1La/Ca2ρLa/Ca1eρLa/Ca2gΩLa/Ca2La/Ca2ρLa/Ca2eρ¯La/Ca2g,dρLa/Ca1gdt=GρLa/Ca1g+kLa/Ca1ρLa/Ca1e+ΩLa/Ca1La/Ca2ρLa/Ca1eρLa/Ca2g+ΩLa/Ca1La/Ca1ρLa/Ca1eρ¯La/Ca1g+ΩLa/Ca1La/Ca2ρLa/Ca1eρ¯La/Ca2g,dρLa/Ca2gdt=GρLa/Ca2g+kLa/Ca2ρLa/Ca2eΩLa/Ca1La/Ca2ρLa/Car1eρLa/Ca2g+ΩLa/Ca2La/Ca2ρLa/Ca2eρ¯La/Ca2g,dρ¯La/Ca1edt=Gρ¯La/Ca1g(kLa/Ca1+Kn)ρ¯La/Ca1e+ΩLa/Ca1La/Ca1ρLa/Ca1eρ¯La/Ca1g,dρ¯La/Ca2edt=Gρ¯La/Ca2g(kLa/Ca2+Kn)ρ¯La/Ca2e+ΩLa/Ca1La/Ca2ρLa/Ca1eρ¯La/Ca2g+ΩLa/Ca2La/Ca2ρLa/Ca2eρ¯La/Ca2g,dρ¯La/Ca1gdt=Gρ¯La/Ca1g+(kLa/Ca1+Kn)ρ¯La/Ca1eΩLa/Ca1La/Ca1ρLa/Ca1eρ¯La/Ca1g,dρ¯La/Ca2gdt=Gρ¯La/Ca2g+(kLa/Ca2+Kn)ρ¯La/Ca2eΩLa/Ca1La/Ca2ρLa/Ca1eρ¯La/Ca2gΩLa/Ca2La/Ca2ρLa/Ca2eρ¯La/Ca2g,ρLa/Ca1e+ρLa/Ca2e+ρLa/Ca1g+ρLa/Ca2g+ρ¯La/Ca1e+ρ¯La/Ca2e+ρ¯La/Ca1g+ρ¯La/Ca2g=totalEu2+numberper unit volume(ρTotal).
ρLa/Ca1e=0,ρLa/Ca2e=0,ρLa/Ca1g=m(1q)ρTotal,ρLa/Ca2g=(1m)(1q)ρTotal,ρ¯La/Ca1e=0,ρ¯La/Ca2e=0,ρ¯La/Ca1g=mqρTotal,ρ¯La/Ca2g=(1m)qρTotal,

Metrics