Abstract

The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Leutz and A. Suzuki, in Nonimaging Fresnel Lenses (Springer, 2001), Chap. 1.
  2. A. W. Bett, F. Dimroth, and G. Siefer, in Concentrator Photovoltaics (Springer, 2007), Chap. 4.
  3. Spectrolab data sheets: www.spectrolab.com/DataSheets/PV/CPV/CDO-100-C3MJ.pdf .
  4. NREL’s AM1.5 Standard Dataset: http://rredc.nrel.gov/solar/spectra/am1.5/, accessed on 02/06/2011 .
  5. C. A. Gueymard, Sol. Energy 71, 325 (2001).
    [CrossRef]
  6. F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, Opt. Express 19, A280 (2011).
    [CrossRef]
  7. S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, Astron. Astrophys. Suppl. Ser. 143, 265 (2000).
    [CrossRef]
  8. R. Winston, J. Opt. Soc. Am. 60, 245 (1970).
    [CrossRef]
  9. F. Languy, C. Lenaerts, J. Loicq, T. Thibert, and S. Habraken, Sol. Energy Mater. Sol. Cells 109, 70 (2013).
    [CrossRef]
  10. F. Languy and S. Habraken, Opt. Lett. 36, 2743 (2011).
    [CrossRef]
  11. R. Leutz and H. Ries, in Proceedings of the 2nd International Solar Concentrator Conference for the Generation of Electricity or Hydrogen (2003).

2013 (1)

F. Languy, C. Lenaerts, J. Loicq, T. Thibert, and S. Habraken, Sol. Energy Mater. Sol. Cells 109, 70 (2013).
[CrossRef]

2011 (2)

2001 (1)

C. A. Gueymard, Sol. Energy 71, 325 (2001).
[CrossRef]

2000 (1)

S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, Astron. Astrophys. Suppl. Ser. 143, 265 (2000).
[CrossRef]

1970 (1)

Andrei, A. H.

S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, Astron. Astrophys. Suppl. Ser. 143, 265 (2000).
[CrossRef]

Bett, A. W.

A. W. Bett, F. Dimroth, and G. Siefer, in Concentrator Photovoltaics (Springer, 2007), Chap. 4.

Dimroth, F.

A. W. Bett, F. Dimroth, and G. Siefer, in Concentrator Photovoltaics (Springer, 2007), Chap. 4.

Fleury, K.

Gueymard, C. A.

C. A. Gueymard, Sol. Energy 71, 325 (2001).
[CrossRef]

Habraken, S.

Jilinski, E. G.

S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, Astron. Astrophys. Suppl. Ser. 143, 265 (2000).
[CrossRef]

Languy, F.

Lenaerts, C.

F. Languy, C. Lenaerts, J. Loicq, T. Thibert, and S. Habraken, Sol. Energy Mater. Sol. Cells 109, 70 (2013).
[CrossRef]

F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, Opt. Express 19, A280 (2011).
[CrossRef]

Leutz, R.

R. Leutz and A. Suzuki, in Nonimaging Fresnel Lenses (Springer, 2001), Chap. 1.

R. Leutz and H. Ries, in Proceedings of the 2nd International Solar Concentrator Conference for the Generation of Electricity or Hydrogen (2003).

Loicq, J.

F. Languy, C. Lenaerts, J. Loicq, T. Thibert, and S. Habraken, Sol. Energy Mater. Sol. Cells 109, 70 (2013).
[CrossRef]

F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, Opt. Express 19, A280 (2011).
[CrossRef]

Penna, J. L.

S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, Astron. Astrophys. Suppl. Ser. 143, 265 (2000).
[CrossRef]

Puliaev, S.

S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, Astron. Astrophys. Suppl. Ser. 143, 265 (2000).
[CrossRef]

Regaert, D.

Ries, H.

R. Leutz and H. Ries, in Proceedings of the 2nd International Solar Concentrator Conference for the Generation of Electricity or Hydrogen (2003).

Siefer, G.

A. W. Bett, F. Dimroth, and G. Siefer, in Concentrator Photovoltaics (Springer, 2007), Chap. 4.

Suzuki, A.

R. Leutz and A. Suzuki, in Nonimaging Fresnel Lenses (Springer, 2001), Chap. 1.

Thibert, T.

F. Languy, C. Lenaerts, J. Loicq, T. Thibert, and S. Habraken, Sol. Energy Mater. Sol. Cells 109, 70 (2013).
[CrossRef]

F. Languy, K. Fleury, C. Lenaerts, J. Loicq, D. Regaert, T. Thibert, and S. Habraken, Opt. Express 19, A280 (2011).
[CrossRef]

Winston, R.

Astron. Astrophys. Suppl. Ser. (1)

S. Puliaev, J. L. Penna, E. G. Jilinski, and A. H. Andrei, Astron. Astrophys. Suppl. Ser. 143, 265 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (1)

Sol. Energy (1)

C. A. Gueymard, Sol. Energy 71, 325 (2001).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

F. Languy, C. Lenaerts, J. Loicq, T. Thibert, and S. Habraken, Sol. Energy Mater. Sol. Cells 109, 70 (2013).
[CrossRef]

Other (5)

R. Leutz and H. Ries, in Proceedings of the 2nd International Solar Concentrator Conference for the Generation of Electricity or Hydrogen (2003).

R. Leutz and A. Suzuki, in Nonimaging Fresnel Lenses (Springer, 2001), Chap. 1.

A. W. Bett, F. Dimroth, and G. Siefer, in Concentrator Photovoltaics (Springer, 2007), Chap. 4.

Spectrolab data sheets: www.spectrolab.com/DataSheets/PV/CPV/CDO-100-C3MJ.pdf .

NREL’s AM1.5 Standard Dataset: http://rredc.nrel.gov/solar/spectra/am1.5/, accessed on 02/06/2011 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of an achromatic prism made with PMMA (purple) and PC (cyan).

Fig. 2.
Fig. 2.

Effects of the inclination angle on the incoming angle (a) and on the distance between the edge rays at the receiver level for a deviation angle of 30° (b) and 2° (c).

Fig. 3.
Fig. 3.

Dome-shaped lenses, i.e., with the interface, in blue, situated on a perfect circle. On the left, the top material is the PMMA (in purple) and on the right, the top material is the PC (in cyan).

Fig. 4.
Fig. 4.

Shaped Fresnel lenses optimized and illuminated with an angular diameter of 5°. Left and center: achromatic. Right: singlet.

Fig. 5.
Fig. 5.

Comparison of the concentration distribution for the singlet (left) and the doublet (right) with θdsn=θS=0.26°. The red and purple circles have the same diameter of Δx0=2ftanθS. They contain, respectively, 17.1% and 84.3% of the incoming irradiance (both squares receive about 88%), corresponding to the last line of Table 1.

Tables (1)

Tables Icon

Table 1. Nonimaging Shaped Lenses: Comparison Between Singlets and Achromatic Doublets

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Cmax=(1tanθs×f#)2.
Δx=|x+x|=2x+.
Δx=Δx/xp.
Copt=(2rl/Δx0)2ηopt,

Metrics