Abstract

We present an effective, fast, and straightforward phase aberration compensation method in digital holographic microscopy based on principal component analysis. The proposed method decomposes the phase map into a set of values of uncorrelated variables called principal components, and then extracts the aberration terms from the first principal component obtained. It is effective, fully automatic, and does not require any prior knowledge of the object and the setup. The great performance and limited computational complexity make our approach a very attractive and promising technique for compensating phase aberration in digital holography under time-critical environments.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  2. W. Zhou, Y. Yu, and A. Asundi, Opt. Laser Eng. 47, 264 (2009).
    [CrossRef]
  3. C. Mann, L. Yu, C.-M. Lo, and M. Kim, Opt. Express 13, 8693 (2005).
    [CrossRef]
  4. W. Qu, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, J. Opt. Soc. Am. A 26, 2005 (2009).
    [CrossRef]
  5. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, Opt. Lett. 34, 1276 (2009).
    [CrossRef]
  6. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
    [CrossRef]
  7. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, Opt. Express 14, 4300 (2006).
    [CrossRef]
  8. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, J. Opt. Soc. Am. A 23, 3177 (2006).
    [CrossRef]
  9. J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, Opt. Commun. 282, 3873 (2009).
    [CrossRef]
  10. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
    [CrossRef]
  11. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
    [CrossRef]

2009 (4)

2007 (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

2006 (3)

2005 (1)

2003 (1)

1999 (1)

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Aspert, N.

Asundi, A.

Bourquin, S.

Charrière, F.

Choo, C. O.

Colomb, T.

Coppola, G.

Cuche, E.

De Nicola, S.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Depeursinge, C.

Di, J.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, Opt. Commun. 282, 3873 (2009).
[CrossRef]

Ferraro, P.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
[CrossRef]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
[CrossRef]

Grilli, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
[CrossRef]

Jiang, H.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, Opt. Commun. 282, 3873 (2009).
[CrossRef]

Kim, M.

Kühn, J.

Lo, C.-M.

Magro, C.

Mann, C.

Marian, A.

Marquet, P.

Miccio, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Montfort, F.

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, Appl. Phys. Lett. 90, 041104 (2007).
[CrossRef]

Pierattini, G.

Qu, W.

Singh, V. R.

Sun, W.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, Opt. Commun. 282, 3873 (2009).
[CrossRef]

Weijuan, Q.

Yan, X.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, Opt. Commun. 282, 3873 (2009).
[CrossRef]

Yingjie, Y.

Yu, L.

Yu, Y.

W. Zhou, Y. Yu, and A. Asundi, Opt. Laser Eng. 47, 264 (2009).
[CrossRef]

Zhao, J.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, Opt. Commun. 282, 3873 (2009).
[CrossRef]

Zhou, W.

W. Zhou, Y. Yu, and A. Asundi, Opt. Laser Eng. 47, 264 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Block diagram illustrating the steps involved for traditional digital holographic demodulation and reconstruction (left column) and the proposed PCA compensation algorithm (right column). Exemplary images are given for an experimental result at the output of each step.

Fig. 2.
Fig. 2.

Experimental results on human macrophage cells without phase aberration compensation. (a) Captured digital hologram. (b) Fourier spectrum with the red rectangle as the bandpass filter. The insets in (a) and (b) are the enlargements of the areas selected by the red rectangles. (c) Fourier spectrum after spectrum centering. (d) Reconstructed phase map.

Fig. 3.
Fig. 3.

Phase aberration compensation using the proposed PCA algorithm. (a) The rank one phase aberration approximation formed from the dominant singular vectors. (b) and (c) show the phase reconstructed from the first two and three sets of the dominant singular vectors, respectively. (d) and (e) The unwrapped left and right dominant singular vectors and their corresponding quadratic fitted ones. (f) The obtained phase aberration map. (g) Fourier spectrum after aberration compensation. (h) Reconstructed phase map. (i) Unwrapped phase map. (j) Pseudo-three-dimensional plot of two individual cells indicated by red boxes in (i).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IH(x,y)=|O|2+|R|2+RO*+R*O,
IHF(x,y)=R*O=|R||O|exp[iφ(x,y)]Q(x,y),
Q(x,y)=exp[i(kxx+kyy)]exp[i(lxx2+lyy2)],
QH(x,y)IHF(x,y)=|R||O|exp[iφ(x,y)].

Metrics