Abstract

We report room-temperature lasing from an optically pumped subwavelength-scale cylindrical InGaAsP pillar surrounded by circular Bragg reflectors on a metal substrate with a dielectric spacer layer. By taking advantage of wide in-plane photonic bandgaps and proper vertical antiresonances, three dielectric Bragg pairs produce a sufficient optical feedback capable of low threshold lasing from the fundamental TE011 mode. A large spontaneous emission coupling into the lasing mode is obtained from the cavity-enhanced Purcell effects and effective suppression of nonlasing modes.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers

Se-Heon Kim, Jingqing Huang, and Axel Scherer
J. Opt. Soc. Am. B 29(4) 577-588 (2012)

Hybrid metal-dielectric nanocavity for enhanced light-matter interactions

Yousif A. Kelaita, Kevin A. Fischer, Thomas M. Babinec, Konstantinos G. Lagoudakis, Tomas Sarmiento, Armand Rundquist, Arka Majumdar, and Jelena Vučković
Opt. Mater. Express 7(1) 231-239 (2017)

Hybrid metal-organic nanocavity arrays for efficient light out-coupling

Verena Kolb and Jens Pflaum
Opt. Express 25(6) 6678-6689 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription