Abstract

In this Letter we report on fabricating and analyzing a temperature insensitive refractometer based on two concatenated dual-resonance long-period gratings (LPGs) with an appropriate inter-grating space (IGS) in between. The IGS provides a temperature-dependent extra phase difference between the core and cladding modes, making the refractometer similar to a Mach–Zehnder interferometer with its arms phase shifted. We demonstrate that an appropriate IGS can produce temperature-insensitive resonance wavelengths. The interferometer is highly stable over a wide range of temperature (20°C–100°C). The measured refractive index sensitivity for aqueous solutions (1.333–1.343) is 2583nm/RIU, which is the highest reported so far for biological samples. The interferometer can be used for various other temperature-immune sensing applications also.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
    [CrossRef]
  2. P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).
  3. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009).
    [CrossRef]
  4. X. W. Shu, B. A. L. Gwandu, Y. Lin, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
    [CrossRef]
  5. B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
    [CrossRef]
  6. R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B Chem. 176, 1121 (2013).
    [CrossRef]
  7. Q. Liu, K. S. Chiang, and K. P. Lor, Opt. Lett. 31, 2716 (2006).
    [CrossRef]
  8. H.-J. Chen, L. Wang, and W. F. Liu, Appl. Opt. 47, 556 (2008).
    [CrossRef]
  9. U. Tiwari, S. M. Tripathi, K. Thyagarajan, M. R. Shenoy, V. Mishra, S. C. Jain, N. Singh, and P. Kapur, Opt. Lett. 36, 3747 (2011).
    [CrossRef]
  10. Z. G. Zang and W. X. Yang, J. Appl. Phys. 109, 103106 (2011).
    [CrossRef]
  11. S. Ramachandran, S. Ghalmi, Z. Wang, and M. Yan, Opt. Lett. 27, 1678 (2002).
    [CrossRef]
  12. R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

2013

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B Chem. 176, 1121 (2013).
[CrossRef]

2011

2009

2008

2006

2003

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

2002

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[CrossRef]

S. Ramachandran, S. Ghalmi, Z. Wang, and M. Yan, Opt. Lett. 27, 1678 (2002).
[CrossRef]

2001

Adam, P.

P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).

Allsop, T. P.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[CrossRef]

Bennion, I.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[CrossRef]

X. W. Shu, B. A. L. Gwandu, Y. Lin, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
[CrossRef]

Bock, W. J.

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B Chem. 176, 1121 (2013).
[CrossRef]

Chen, H.-J.

Chiang, K. S.

Eggleton, B. J.

Garg, R.

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B Chem. 176, 1121 (2013).
[CrossRef]

Ghalmi, S.

Gwandu, B. A. L.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[CrossRef]

X. W. Shu, B. A. L. Gwandu, Y. Lin, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
[CrossRef]

Homola, J.

P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).

Jain, S. C.

James, S. W.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Kapur, P.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

Kuhlmey, B. T.

Lin, Y.

Liu, Q.

Liu, W. F.

Lor, K. P.

Mishra, V.

Piliarik, M.

P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).

Ramachandran, S.

Shenoy, M. R.

Shu, X.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[CrossRef]

Shu, X. W.

Singh, N.

Sipova, H.

P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).

Springer, T.

P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).

Tatam, R. P.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Thyagarajan, K.

Tiwari, U.

Tripathi, S. M.

Vala, M.

P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).

Wang, L.

Wang, Z.

Wu, D. K. C.

Yan, M.

Yang, W. X.

Z. G. Zang and W. X. Yang, J. Appl. Phys. 109, 103106 (2011).
[CrossRef]

Zang, Z. G.

Z. G. Zang and W. X. Yang, J. Appl. Phys. 109, 103106 (2011).
[CrossRef]

Zhang, L.

Zhang, W.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[CrossRef]

Appl. Opt.

Electron. Lett.

B. A. L. Gwandu, X. Shu, T. P. Allsop, W. Zhang, and I. Bennion, Electron. Lett. 38, 695 (2002).
[CrossRef]

J. Appl. Phys.

Z. G. Zang and W. X. Yang, J. Appl. Phys. 109, 103106 (2011).
[CrossRef]

Meas. Sci. Technol.

S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
[CrossRef]

Opt. Lett.

Sens. Actuators B Chem.

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, Sens. Actuators B Chem. 176, 1121 (2013).
[CrossRef]

Other

P. Adam, M. Piliarik, H. Sipova, T. Springer, M. Vala, and J. Homola, in Photonic Sensing: Principles and Applications for Safety and Security Monitoring, G. Xiao and W. J. Bock, eds. (Wiley, 2012).

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the sensor structure. (b) Transmission spectrum of single LPG.

Fig. 2.
Fig. 2.

Experimental transmission spectrum for (a) =18cm and (b) =21cm. Variation of reference minima near 1650 nm, for =21cm, as a function of (c) temperature and (d) ambient RI. The spectral shift, corresponding to maxima/minima near 1650 nm, for different is shown in the inset of (c) for a temperature increase of 20°C.

Fig. 3.
Fig. 3.

Spectral variation of the propagation constant difference between the core mode and the cladding mode (βcβcl) in the (a) unetched region (rcl=62.5μm) and (b) etched region (rcl=55μm) of optical fiber. Theoretical transmission spectrum employing (c) single LPG in etched fiber and (d) concatenated LPGs in etched fiber separated by an unetched IGS (=5cm). The ambient region is taken as water (r.i.=1.333) throughout the calculations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[AcAcl]=TLPG×[eiβc00eiβcl]×TLPG×[10],

Metrics