Abstract

We report a simple method to exploit the typical properties of solitons on a finite background in order to generate high-repetition-rate and high-quality optical pulse trains. We take advantage of the nonlinear evolution of a modulated continuous wave toward localized structures upon a nonzero background wave in anomalous dispersive fiber. After a stage of nonlinear compression, a delay-line interferometer enables the annihilation of the finite background and simultaneously allows the repetition-rate doubling of the pulse train.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Kuznetsov, Dokl. Akam. Nauk SSSR 22, 507 (1977).
  2. N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
    [CrossRef]
  3. K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, Opt. Lett. 36, 112 (2011).
    [CrossRef]
  4. K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and J. M. Dudley, Opt. Lett. 36, 2140 (2011).
    [CrossRef]
  5. B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
    [CrossRef]
  6. T. Inoue and S. Namiki, Laser Photon. Rev. 2, 83 (2008).
    [CrossRef]
  7. S. Pitois, C. Finot, J. Fatome, and G. Millot, Opt. Commun. 260, 301 (2006).
    [CrossRef]
  8. C. Mahnke and F. Mitschke, Phys. Rev. A 85, 033808 (2012).
    [CrossRef]
  9. D. K. Serkland, G. D. Bartolini, W. L. Kath, P. Kumar, and A. V. Sahakian, J. Lightwave Technol. 16, 670 (1998).
    [CrossRef]

2012 (2)

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

C. Mahnke and F. Mitschke, Phys. Rev. A 85, 033808 (2012).
[CrossRef]

2011 (2)

2008 (1)

T. Inoue and S. Namiki, Laser Photon. Rev. 2, 83 (2008).
[CrossRef]

2006 (1)

S. Pitois, C. Finot, J. Fatome, and G. Millot, Opt. Commun. 260, 301 (2006).
[CrossRef]

1998 (1)

1986 (1)

N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

1977 (1)

E. A. Kuznetsov, Dokl. Akam. Nauk SSSR 22, 507 (1977).

Akhmediev, N.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and J. M. Dudley, Opt. Lett. 36, 2140 (2011).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

Bartolini, G. D.

Dias, F.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

Dudley, J. M.

Fatome, J.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and J. M. Dudley, Opt. Lett. 36, 2140 (2011).
[CrossRef]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, Opt. Lett. 36, 112 (2011).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, and G. Millot, Opt. Commun. 260, 301 (2006).
[CrossRef]

Finot, C.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, Opt. Lett. 36, 112 (2011).
[CrossRef]

K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and J. M. Dudley, Opt. Lett. 36, 2140 (2011).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, and G. Millot, Opt. Commun. 260, 301 (2006).
[CrossRef]

Genty, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

Hammani, K.

Inoue, T.

T. Inoue and S. Namiki, Laser Photon. Rev. 2, 83 (2008).
[CrossRef]

Kath, W. L.

Kibler, B.

Korneev, V. I.

N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

Kumar, P.

Kuznetsov, E. A.

E. A. Kuznetsov, Dokl. Akam. Nauk SSSR 22, 507 (1977).

Mahnke, C.

C. Mahnke and F. Mitschke, Phys. Rev. A 85, 033808 (2012).
[CrossRef]

Millot, G.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and J. M. Dudley, Opt. Lett. 36, 2140 (2011).
[CrossRef]

K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, Opt. Lett. 36, 112 (2011).
[CrossRef]

S. Pitois, C. Finot, J. Fatome, and G. Millot, Opt. Commun. 260, 301 (2006).
[CrossRef]

Mitschke, F.

C. Mahnke and F. Mitschke, Phys. Rev. A 85, 033808 (2012).
[CrossRef]

Morin, P.

Namiki, S.

T. Inoue and S. Namiki, Laser Photon. Rev. 2, 83 (2008).
[CrossRef]

Pitois, S.

S. Pitois, C. Finot, J. Fatome, and G. Millot, Opt. Commun. 260, 301 (2006).
[CrossRef]

Sahakian, A. V.

Serkland, D. K.

Wetzel, B.

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and J. M. Dudley, Opt. Lett. 36, 2140 (2011).
[CrossRef]

Dokl. Akam. Nauk SSSR (1)

E. A. Kuznetsov, Dokl. Akam. Nauk SSSR 22, 507 (1977).

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

T. Inoue and S. Namiki, Laser Photon. Rev. 2, 83 (2008).
[CrossRef]

Opt. Commun. (1)

S. Pitois, C. Finot, J. Fatome, and G. Millot, Opt. Commun. 260, 301 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

C. Mahnke and F. Mitschke, Phys. Rev. A 85, 033808 (2012).
[CrossRef]

Sci. Rep. (1)

B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[CrossRef]

Theor. Math. Phys. (1)

N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Principle of frequency doubling and cleanup operations on a pulse train on a finite background. (a) Initial train of breathers. (b) Initial train of breathers (black line) and replica delayed by half of a period and phase shifted by π (gray line). (c) Resulting pulse train after recombination. The temporal intensity and amplitude profiles as well as the spectral intensity profiles are compared in panels 1, 2, and 3, respectively. In the magnification of (c1), the resulting intensity profile (black line) is compared with the temporal sech intensity profile of a soliton (gray line).

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Experimental results obtained for an input frequency of 25 GHz. Evolution of the temporal intensity profile over one period of the initial beat signal (plotted with gray dashed line): the pulse train emerging from the SMF (gray circles) is compared with the pulse train obtained after the DLI (solid black line). Analytical predictions from Eqs. (1)–(3) (a1) are compared with the experimental results (a2). (b) Corresponding experimental spectra.

Fig. 4.
Fig. 4.

Experimental results obtained for various repetition rates and fiber lengths. The temporal intensity profile over two periods of the pulse train emerging from the SMF (gray circles) is compared with the pulse train obtained after the DLI (solid black line). Results obtained by means of a 2.1 km long SMF for output repetition rates of (a) 28 GHz and (b) 80 GHz are compared with results obtained in 8 km for output frequencies of (c) 25 GHz and (d) 40 GHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ψ(t)=P0(14a)+2acos(ωmodt)2acos(ωmodt)1,
ψT(t)=P04(12a)acos(ωmodt)12acos2(ωmodt),
P(T)=P016a(12a)2cos2(ωmodt)1+4a2cos4(ωmodt)4acos2(ωmodt).

Metrics