Abstract

Channeled spectropolarimeters measure the polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high-order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the Stokes polarization information. A primary limitation of these instruments is the thermal variability of the retarders, which necessitates frequent system recalibration. Past work has addressed this issue by implementing an athermalized retarder produced from two uniaxial crystals. However, reducing the complexity of an athermalized retarder is advantageous for minimizing size and weight requirements. In this Letter, a technique for producing a thermally stable channeled spectropolarimeter using biaxial retarders is presented. This technique preserves a constant phase over an appreciable temperature range. Proof-of-concept results from a KTP-based athermal partial channeled spectropolarimeter are presented from 500 to 750 nm for temperature changes up to 26°C. Spectropolarimetric reconstructions produced from this system vary by <=2.6% RMS when the retarder experiences a 13°C increase in temperature above 21°C ambient, <=5.2% for a 20°C increase, and <=6.7% for a 26°C increase.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Nordsieck, Publ. Astron. Soc. Pac. 86, 324 (1974).
    [CrossRef]
  2. K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
    [CrossRef]
  3. D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, and J. Garcia, Opt. Eng. 41, 1048 (2002).
    [CrossRef]
  4. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, Opt. Express 12, 6559 (2004).
    [CrossRef]
  5. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, Opt. Express 15, 12792 (2007).
    [CrossRef]
  6. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, Appl. Opt. 50, 1170 (2011).
    [CrossRef]
  7. A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, Opt. Lett. 31, 3279 (2006).
    [CrossRef]
  8. F. Snik, T. Karalidi, and C. U. Keller, Appl. Opt. 48, 1337 (2009).
    [CrossRef]
  9. C. Ebbers, J. Opt. Soc. Am. B 12, 1012 (1995).
    [CrossRef]

2011

2009

2007

2006

2004

2002

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, and J. Garcia, Opt. Eng. 41, 1048 (2002).
[CrossRef]

1999

1995

1974

K. H. Nordsieck, Publ. Astron. Soc. Pac. 86, 324 (1974).
[CrossRef]

Craven-Jones, J.

Dereniak, E. L.

Descour, M.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, and J. Garcia, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Ebbers, C.

Garcia, J.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, and J. Garcia, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Gerhart, G. R.

Hagen, N. A.

Hayakawa, M.

Iannarilli, F. J.

Jones, S. H.

Karalidi, T.

Kato, T.

Kebabian, P. L.

Keller, C. U.

Kudenov, M. W.

Locke, A.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, and J. Garcia, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Nordsieck, K. H.

K. H. Nordsieck, Publ. Astron. Soc. Pac. 86, 324 (1974).
[CrossRef]

Oka, K.

Okabe, H.

Sabatke, D.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, and J. Garcia, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Snik, F.

Stapelbroek, M. G.

Taniguchi, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a CSP system. For a complete polarization measurement, two retarders, R1 and R2, and an analyzer A are placed in series before a spectrometer.

Fig. 2.
Fig. 2.

Example of thermally induced reconstruction errors in Stokes parameters S1 (blue), S2 (green), and S3 (red), across the VISNIR. A 5°C change in temperature between calibration and data acquisition was used.

Fig. 3.
Fig. 3.

KTP BTI retarder (of diameter D=25mm and thickness l=4.75mm) used in the experimental setup. The tolerance on the axes orientations was specified as ±0.5°.

Fig. 4.
Fig. 4.

(a) Simulated and (b) experimental ACSP modulated spectral data for retarder temperatures of 21.4°C, 32.4°C, and 42.4°C. The consistency in the carrier frequency is indicative of the thermal stability of the retarder. (c) A KTP retarder that is used at a non-BTI angle experiences a change in carrier frequency as a function of temperature.

Fig. 5.
Fig. 5.

Example reconstructions from the ACSP prototype.

Tables (1)

Tables Icon

Table 1. RMSE in ACSP Reconstructions Using Ambient Reference Data Versus High-Temperature Reference Data

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(σ)=12[S0(σ)+S1(σ)cos(ϕ2)+S2(σ)sin(ϕ1)sin(ϕ2)S3(σ)cos(ϕ1)sin(ϕ2)].
Δϕi2πσliΔT[B(σ)γL+(n1Tn2T)],
nxz=nxnznx2sin2(θ)+nz2cos2(θ).

Metrics