Abstract

Channeled spectropolarimeters measure the polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high-order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the Stokes polarization information. A primary limitation of these instruments is the thermal variability of the retarders, which necessitates frequent system recalibration. Past work has addressed this issue by implementing an athermalized retarder produced from two uniaxial crystals. However, reducing the complexity of an athermalized retarder is advantageous for minimizing size and weight requirements. In this Letter, a technique for producing a thermally stable channeled spectropolarimeter using biaxial retarders is presented. This technique preserves a constant phase over an appreciable temperature range. Proof-of-concept results from a KTP-based athermal partial channeled spectropolarimeter are presented from 500 to 750 nm for temperature changes up to 26°C. Spectropolarimetric reconstructions produced from this system vary by <=2.6% RMS when the retarder experiences a 13°C increase in temperature above 21°C ambient, <=5.2% for a 20°C increase, and <=6.7% for a 26°C increase.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription