Abstract

We propose an asymmetric optical image encryption scheme that uses an amplitude and phase mixture retrieval of the Yang–Gu algorithm. The encryption process is realized by employing a cascaded Yang–Gu algorithm together with two random phase masks that serve as the public encryption keys. The two private keys are generated in the encryption process and are randomly distributed binary matrices to be used for performing one-way binary phase modulations. Without the private keys, illegal users cannot retrieve the secret image. Numerical simulations are carried out to demonstrate the validity and security of the proposed scheme.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Refrégiér and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef]
  2. B. Zhu, S. Liu, and Q. Ran, Opt. Lett. 25, 1159 (2000).
    [CrossRef]
  3. S. Kishk and B. Javidi, Opt. Lett. 28, 167 (2003).
    [CrossRef]
  4. G. Situ and J. Zhang, Opt. Lett. 29, 1584 (2004).
    [CrossRef]
  5. A. Alfaloul and C. Brosseau, Opt. Lett. 35, 2185 (2010).
    [CrossRef]
  6. W. Qin and X. Peng, Opt. Lett. 35, 118 (2010).
    [CrossRef]
  7. W. Qin, X. Peng, X. Meng, and B. Gao, Opt. Eng. 50, 080501 (2011).
    [CrossRef]
  8. S. Rajput and N. Nishchal, Appl. Opt. 52, 871 (2013).
    [CrossRef]
  9. X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
    [CrossRef]
  10. G. Yang, B. Gu, and B. Dong, Proc. SPIE 1767, 457 (1992).
    [CrossRef]
  11. R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).
    [CrossRef]
  12. X. Cheng, L. Cai, Y. Wang, X. Meng, H. Zhang, X. Xu, X. Shen, and G. Dong, Opt. Lett. 33, 1575 (2008).
    [CrossRef]
  13. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, Opt. Lett. 30, 1644 (2005).
    [CrossRef]
  14. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, Opt. Express 14, 3181 (2006).
    [CrossRef]
  15. X. Peng, H. Wei, and P. Zhang, Opt. Lett. 31, 3261 (2006).
    [CrossRef]
  16. P. Kumar, A. Kumar, J. Joseph, and K. Singh, Opt. Lasers Eng. 50, 1196 (2012).
    [CrossRef]

2013 (1)

2012 (2)

X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
[CrossRef]

P. Kumar, A. Kumar, J. Joseph, and K. Singh, Opt. Lasers Eng. 50, 1196 (2012).
[CrossRef]

2011 (1)

W. Qin, X. Peng, X. Meng, and B. Gao, Opt. Eng. 50, 080501 (2011).
[CrossRef]

2010 (2)

2008 (1)

2006 (2)

2005 (1)

2004 (1)

2003 (1)

2000 (1)

1995 (1)

1992 (1)

G. Yang, B. Gu, and B. Dong, Proc. SPIE 1767, 457 (1992).
[CrossRef]

1978 (1)

R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).
[CrossRef]

Adleman, L.

R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).
[CrossRef]

Alfaloul, A.

Arcos, S.

Brosseau, C.

Cai, L.

Carnicer, A.

Cheng, X.

Dong, B.

G. Yang, B. Gu, and B. Dong, Proc. SPIE 1767, 457 (1992).
[CrossRef]

Dong, G.

Gao, B.

W. Qin, X. Peng, X. Meng, and B. Gao, Opt. Eng. 50, 080501 (2011).
[CrossRef]

Gopinathan, U.

Gu, B.

G. Yang, B. Gu, and B. Dong, Proc. SPIE 1767, 457 (1992).
[CrossRef]

Javidi, B.

Joseph, J.

P. Kumar, A. Kumar, J. Joseph, and K. Singh, Opt. Lasers Eng. 50, 1196 (2012).
[CrossRef]

Juvells, I.

Kishk, S.

Kumar, A.

P. Kumar, A. Kumar, J. Joseph, and K. Singh, Opt. Lasers Eng. 50, 1196 (2012).
[CrossRef]

Kumar, P.

P. Kumar, A. Kumar, J. Joseph, and K. Singh, Opt. Lasers Eng. 50, 1196 (2012).
[CrossRef]

Liu, S.

Meng, X.

Monaghan, D. S.

Montes-Usategui, M.

Naughton, T. J.

Nishchal, N.

Peng, X.

Qin, W.

W. Qin, X. Peng, X. Meng, and B. Gao, Opt. Eng. 50, 080501 (2011).
[CrossRef]

W. Qin and X. Peng, Opt. Lett. 35, 118 (2010).
[CrossRef]

Rajput, S.

Ran, Q.

Refrégiér, P.

Rivest, R. L.

R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).
[CrossRef]

Shamir, A.

R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).
[CrossRef]

Shen, X.

Sheridan, J. T.

Singh, K.

P. Kumar, A. Kumar, J. Joseph, and K. Singh, Opt. Lasers Eng. 50, 1196 (2012).
[CrossRef]

Situ, G.

Wang, X.

X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
[CrossRef]

Wang, Y.

Wei, H.

Xu, X.

Yang, G.

G. Yang, B. Gu, and B. Dong, Proc. SPIE 1767, 457 (1992).
[CrossRef]

Zhang, H.

Zhang, J.

Zhang, P.

Zhao, D.

X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
[CrossRef]

Zhu, B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Flowchart of the proposed encryption process.

Fig. 2.
Fig. 2.

Flowchart of the kth loop of the iterative process for the first step of encryption. FT and IFT indicate Fourier transform and inverse Fourier transform.

Fig. 3.
Fig. 3.

Flowchart of the decryption process.

Fig. 4.
Fig. 4.

Schematic diagram of the optical implementation for decryption. SLM, spatial light modulator; L, lens; CCD, CCD camera; PC, personal computer.

Fig. 5.
Fig. 5.

(a) Tested image, (b) encrypted image, (c), and (d) generated private keys.

Fig. 6.
Fig. 6.

Security test results of (a) random modulation regions and (b) modulation parameters.

Fig. 7.
Fig. 7.

Decoded image using (a) correct private keys, (b) random keys, (c) public keys, and (d) fake keys.

Tables (1)

Tables Icon

Table 1. Occupied Percentage of the Modulation Regions

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g(u,v)P1(u,v)=U^{I(x,y)exp[iϕ1(x,y)]}.
gk+1(u,v)=Re{Fk(u,v)P1*(u,v)},
NMSE=m,n[I(m,n)f(m,n)]2/m,nI2(m,n),
γ1(u,v)={1g(u,v)<00g(u,v)>0.
g(u,v)=g(u,v)exp[iπγ1(u,v)].
D1(u,v)=P1(u,v)exp[iπγ1(u,v)],
D2(x,y)=P2(x,y)exp[iπγ2(x,y)].
C=|FT{|FT{IP1}|P2}|,
C=|FT{|FT{Iexp(iϕ1)}|exp(iϕ2)}|,

Metrics