Abstract

Narrowband filtering based on whispering gallery modes of a slightly tapered cylindrical optical microresonator was used to implement a tunable narrowband erbium-doped fiber laser. The laser can be set to emit a single longitudinal cavity mode (single frequency), although the laser cavity is a few meters long. In the single-frequency regime the laser can emit a maximum power of 0.380 mW with a linewidth <35kHz and a signal-to-noise ratio exceeding 50 dB. Tunability is achieved by sliding the excitation point along the microcylinder. A tuning range of 1.16 nm is demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, Opt. Lett. 34, 1318 (2009).
    [CrossRef]
  2. T. Carmon and K. J. Vahala, Nat. Phys. 3, 430 (2007).
    [CrossRef]
  3. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
    [CrossRef]
  4. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, Opt. Lett. 25, 1430 (2000).
    [CrossRef]
  5. M. Bumki, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
    [CrossRef]
  6. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  7. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Express 15, 12011 (2007).
    [CrossRef]
  8. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Photon. Nanostruct. Fundam. Appl. 9, 149 (2011).
    [CrossRef]
  9. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, Opt. Express 19, 21540 (2011).
    [CrossRef]
  10. D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5439 (2004).
    [CrossRef]
  11. M. Sumetsky, Opt. Lett. 36, 145 (2011).
    [CrossRef]
  12. M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
    [CrossRef]
  13. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef]
  14. K. Kieu and M. Mansuripur, Opt. Lett. 32, 244 (2007).
    [CrossRef]
  15. P. Horak and W. H. Loh, Opt. Express 14, 3923 (2006).
    [CrossRef]

2011 (3)

2010 (1)

2009 (1)

2007 (4)

T. Carmon and K. J. Vahala, Nat. Phys. 3, 430 (2007).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

K. Kieu and M. Mansuripur, Opt. Lett. 32, 244 (2007).
[CrossRef]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Express 15, 12011 (2007).
[CrossRef]

2006 (1)

2005 (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

2004 (1)

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5439 (2004).
[CrossRef]

2003 (1)

2000 (1)

1997 (1)

Andrés, M. V.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Photon. Nanostruct. Fundam. Appl. 9, 149 (2011).
[CrossRef]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Express 15, 12011 (2007).
[CrossRef]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5439 (2004).
[CrossRef]

Birks, T. A.

Bumki, M.

Cai, M.

Carmon, T.

T. Carmon and K. J. Vahala, Nat. Phys. 3, 430 (2007).
[CrossRef]

Cheung, G.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Díez, A.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Photon. Nanostruct. Fundam. Appl. 9, 149 (2011).
[CrossRef]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Express 15, 12011 (2007).
[CrossRef]

Dulashko, Y.

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Gimeno, B.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Photon. Nanostruct. Fundam. Appl. 9, 149 (2011).
[CrossRef]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Express 15, 12011 (2007).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Horak, P.

Ilchenko, V. S.

Jacques, F.

Kieu, K.

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

M. Bumki, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

Knight, J. C.

Liang, W.

Loh, W. H.

Maleki, L.

Manchee, C. P. K.

Mansuripur, M.

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5439 (2004).
[CrossRef]

Matsko, A. B.

Meldrum, A.

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5439 (2004).
[CrossRef]

Painter, O.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Savchenkov, A. A.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Seidel, D.

Sercel, P. C.

Silverstone, J. W.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Sumetsky, M.

Vahala, K. J.

T. Carmon and K. J. Vahala, Nat. Phys. 3, 430 (2007).
[CrossRef]

D. Armani, B. Min, A. Martin, and K. J. Vahala, Appl. Phys. Lett. 85, 5439 (2004).
[CrossRef]

M. Bumki, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, Opt. Lett. 25, 1430 (2000).
[CrossRef]

Veinot, J. G. C.

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature 450, 1214 (2007).
[CrossRef]

Zamora, V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmittance and reflectivity as a function of wavelength around a WGM resonance. The resonant wavelength is 1531.1 nm. Inset shows schematically the TTF–MR system.

Fig. 2.
Fig. 2.

Diagram of the laser arrangement. PC, polarization controller; DL, delay line; WDM, wavelength division multiplexer.

Fig. 3.
Fig. 3.

Emission spectrum when the distance between the TTF and the MR was >2μm (dashed line) and 0.5 μm (solid line). MR diameter, 60 μm; pump power, 40 mW. Inset shows an example of multiwavelength emission. MR diameter, 110 μm; and pump power, 100 mW.

Fig. 4.
Fig. 4.

Beat RF spectra obtained by the delayed self-heterodyne interferometer technique, for different laser conditions. (a) A single longitudinal mode is emitted. (b) Several longitudinal modes are emitted. The vertical scale is the same in both cases. The dashed line shows the WGM resonance spectrum superimposed.

Fig. 5.
Fig. 5.

Laser emission spectra recorded at different positioning of the TTF along the MR. MR diameter: 60 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δλλ=δaa+δneffneff,

Metrics