Abstract

Optical nanocouplers matching a fiber microwaveguide to a plasmonic nanowaveguide are essential components for practical applications of nanophotonic systems. In this Letter we design an efficient nanocoupler using a directive nanoantenna in the visible range λ0=0.65μm. The antenna has been optimized both in the configuration and in the matching element in order to achieve the maximum coupling efficiency (CE). In spite of the reduced size of the nanoantenna in comparison with the impinging fiber spot size (due to the localized plasmonic resonance at such high frequency), we have shown that a good efficiency can be achieved, improving the CE by a factor of 10 with respect to the nondirective antenna nanocouplers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. F. van Hulst, Nat. Photonics 5, 83 (2011).
    [CrossRef]
  2. P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).
    [CrossRef]
  3. A. Andryiesuski and A. V. Lavrinenko, Adv. Optoelectron. 2012, 839747 (2012).
  4. J. Wen, S. Romanov, and U. Peschel, Opt. Express 17, 5925 (2009).
    [CrossRef]
  5. J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
    [CrossRef]
  6. A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, and A. Lavrinenko, Opt. Lett. 37, 1124 (2012).
    [CrossRef]
  7. J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, Opt. Express 18, 15876 (2010).
    [CrossRef]
  8. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, J Opt. Soc. Am. A 28, 1341 (2011).
    [CrossRef]
  9. M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, Prog. Electromagn. Res. 118, 425 (2011).
    [CrossRef]
  10. M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, Opt. Express 20, 9161 (2012).
    [CrossRef]
  11. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  12. C. A. Balanis, Antenna Theory: Analysis and Design(Wiley, 1982).
  13. A. Alu and N. Engheta, Phys. Rev. Lett. 104, 213902 (2010).
    [CrossRef]
  14. D. M. Solis, J. M. Taboada, F. Obelleiro, and L. Landesa, Opt. Express 21, 2369 (2013).
    [CrossRef]
  15. LaseOptics Corp., http://www.laseoptics.com

2013 (1)

2012 (4)

2011 (4)

L. Novotny and N. F. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, J Opt. Soc. Am. A 28, 1341 (2011).
[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, Prog. Electromagn. Res. 118, 425 (2011).
[CrossRef]

2010 (2)

2009 (1)

Alu, A.

A. Alu and N. Engheta, Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef]

Andryiesuski, A.

A. Andryiesuski and A. V. Lavrinenko, Adv. Optoelectron. 2012, 839747 (2012).

Andryieuski, A.

Araújo, M. G.

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, Opt. Express 20, 9161 (2012).
[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, J Opt. Soc. Am. A 28, 1341 (2011).
[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, Prog. Electromagn. Res. 118, 425 (2011).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design(Wiley, 1982).

Banzer, P.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

Biagi, G.

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef]

García-Tuñón, I.

Goldberg, D.

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Holmgaard, T.

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Kriesch, A.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

Landesa, L.

Lavrinenko, A.

Lavrinenko, A. V.

A. Andryiesuski and A. V. Lavrinenko, Adv. Optoelectron. 2012, 839747 (2012).

Malureanu, R.

Novotny, L.

L. Novotny and N. F. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Obelleiro, F.

Peschel, U.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

J. Wen, S. Romanov, and U. Peschel, Opt. Express 17, 5925 (2009).
[CrossRef]

Ploss, D.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

Rivero, J.

M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, Opt. Express 20, 9161 (2012).
[CrossRef]

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, Prog. Electromagn. Res. 118, 425 (2011).
[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, J Opt. Soc. Am. A 28, 1341 (2011).
[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, Opt. Express 18, 15876 (2010).
[CrossRef]

Romanov, S.

Schmauss, B.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

Solis, D. M.

Solís, D. M.

Taboada, J. M.

van Hulst, N. F.

L. Novotny and N. F. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Wen, J.

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

J. Wen, S. Romanov, and U. Peschel, Opt. Express 17, 5925 (2009).
[CrossRef]

Adv. Optoelectron. (1)

A. Andryiesuski and A. V. Lavrinenko, Adv. Optoelectron. 2012, 839747 (2012).

Appl. Phys. Lett. (1)

J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, Appl. Phys. Lett. 98, 101109 (2011).
[CrossRef]

J Opt. Soc. Am. A (1)

J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, J Opt. Soc. Am. A 28, 1341 (2011).
[CrossRef]

Nat. Photonics (1)

L. Novotny and N. F. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Alu and N. Engheta, Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef]

Prog. Electromagn. Res. (1)

M. G. Araújo, J. M. Taboada, J. Rivero, and F. Obelleiro, Prog. Electromagn. Res. 118, 425 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Other (3)

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

C. A. Balanis, Antenna Theory: Analysis and Design(Wiley, 1982).

LaseOptics Corp., http://www.laseoptics.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of the proposed nanoantenna coupler design, consisting of a directive Y-U nanoantenna connected to the receiving MIM waveguide, which is terminated with a matched load. An impedance matching dielectric nanoparticle is included in the gap of the feed element. A Gaussian beam is impinging on the nanoantenna.

Fig. 2.
Fig. 2.

Incident Gaussian beam impinging on the nanoantenna. The white area indicates the spot size (1.2 μm). The dashed circle indicates the antenna’s circumscribed area.

Fig. 3.
Fig. 3.

(a) Electric near field distribution (V/m) in the nanoantenna and the plasmonic waveguide. (b) Amplitude of the electric field along the center of the waveguide passing through the points A (nanoantenna gap), B (beginning of the matched load), and C (end of the waveguide).

Tables (1)

Tables Icon

Table 1. Coupling Efficiencies

Metrics