Abstract

We report on a generation of self-starting mode-locked resembling (MLR) pulses in an all-fiber, gain-switched Tm3+-doped fiber laser operating at 2 μm wavelength, which we believe to be the first demonstration of such an approach. The laser delivers 100% modulated MLR pulses within an envelope of 30ns gain-switched pulse at a repetition rate of 30 kHz. The maximum average output power is 0.4 W and the maximum peak-power of MLR pulses can be as high as 1.1 kW. The performance of the laser is described.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [CrossRef]
  2. F. Qamar and T. A. King, Opt. Laser Technol. 38, 1 (2006).
    [CrossRef]
  3. M. Jiang and P. Tayebati, Opt. Lett. 32, 1797 (2007).
    [CrossRef]
  4. Q. Wang, J. Geng, T. Luo, and S. Jiang, Opt. Lett. 34, 3616 (2009).
    [CrossRef]
  5. M. Eckerle, C. Kieleck, J. Swiderski, S. D. Jackson, G. Maze, and M. Eichhorn, Opt. Lett. 37, 512 (2012).
    [CrossRef]
  6. H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7, 270 (1965).
    [CrossRef]
  7. F. Z. Qamar and T. A. King, J. Mod. Opt. 52, 1031 (2005).
    [CrossRef]
  8. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, Appl. Opt. 32, 286 (1993).
    [CrossRef]
  9. V. N. Philippov, A. V. Kir’yanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
    [CrossRef]
  10. B. N. Upadhyaya, U. Chakravarty, A. Kuruvilla, K. Thyagarajan, M. R. Shenoy, and S. M. Oak, Opt. Express 15, 11576 (2007).
    [CrossRef]
  11. F. Sanchez and A. Kellou, J. Opt. Soc. Am. B 14, 209 (1997).
    [CrossRef]
  12. S. D. Jackson and T. A. King, J. Opt. Soc. Am. B 16, 2178 (1999).
    [CrossRef]
  13. A. F. El-Sherif and T. A. King, Opt. Commun. 208, 381 (2002).
    [CrossRef]

2012 (2)

2009 (1)

2007 (2)

2006 (1)

F. Qamar and T. A. King, Opt. Laser Technol. 38, 1 (2006).
[CrossRef]

2005 (1)

F. Z. Qamar and T. A. King, J. Mod. Opt. 52, 1031 (2005).
[CrossRef]

2004 (1)

V. N. Philippov, A. V. Kir’yanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

2002 (1)

A. F. El-Sherif and T. A. King, Opt. Commun. 208, 381 (2002).
[CrossRef]

1999 (1)

1997 (1)

1993 (1)

1965 (1)

H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7, 270 (1965).
[CrossRef]

Chakravarty, U.

Chrostowski, J.

Collins, R. J.

H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7, 270 (1965).
[CrossRef]

Eckerle, M.

Eichhorn, M.

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, Opt. Commun. 208, 381 (2002).
[CrossRef]

Geng, J.

Jackson, S. D.

Jiang, M.

Jiang, S.

Kellou, A.

Kieleck, C.

King, T. A.

F. Qamar and T. A. King, Opt. Laser Technol. 38, 1 (2006).
[CrossRef]

F. Z. Qamar and T. A. King, J. Mod. Opt. 52, 1031 (2005).
[CrossRef]

A. F. El-Sherif and T. A. King, Opt. Commun. 208, 381 (2002).
[CrossRef]

S. D. Jackson and T. A. King, J. Opt. Soc. Am. B 16, 2178 (1999).
[CrossRef]

Kir’yanov, A. V.

V. N. Philippov, A. V. Kir’yanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

Koningstein, J. A. K.

Kuruvilla, A.

Luo, T.

Maze, G.

Mocker, H. W.

H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7, 270 (1965).
[CrossRef]

Myslinski, P.

Oak, S. M.

Philippov, V. N.

V. N. Philippov, A. V. Kir’yanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

Qamar, F.

F. Qamar and T. A. King, Opt. Laser Technol. 38, 1 (2006).
[CrossRef]

Qamar, F. Z.

F. Z. Qamar and T. A. King, J. Mod. Opt. 52, 1031 (2005).
[CrossRef]

Sanchez, F.

Shenoy, M. R.

Simpson, J. R.

Swiderski, J.

Tayebati, P.

Thyagarajan, K.

Unger, S.

V. N. Philippov, A. V. Kir’yanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

Upadhyaya, B. N.

Wang, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7, 270 (1965).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. N. Philippov, A. V. Kir’yanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

J. Mod. Opt. (1)

F. Z. Qamar and T. A. King, J. Mod. Opt. 52, 1031 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[CrossRef]

Opt. Commun. (1)

A. F. El-Sherif and T. A. King, Opt. Commun. 208, 381 (2002).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

F. Qamar and T. A. King, Opt. Laser Technol. 38, 1 (2006).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Output pulse train of the TDFL at PRF of 30 kHz. Insets 1 and 2 show MLR pulses in an envelope of single gain-switched pulse and a single MLR highest peak, respectively.

Fig. 3.
Fig. 3.

Measured output pulse for pump power of 0.81 W (pump pulse energy, 27 μJ). Inset, output spectrum.

Fig. 4.
Fig. 4.

Measured output pulse for pump power of 1.2 W (pump pulse energy, 40 μJ). Inset, output spectrum.

Fig. 5.
Fig. 5.

Measured output pulse for pump power of 1.8 W (pump pulse energy, 60 μJ). Inset, output spectrum.

Fig. 6.
Fig. 6.

Pulse energy and peak-power for selected MLR pulses in a gain-switched pulse envelope (inset).

Metrics