Abstract

We address the question of whether an optical vortex can be trapped in a dielectric structure with a core of a lower refractive index than the cladding—namely an antiguide. Extensive numerical simulations seem to indicate that this inverse trapping of a vortex is not possible, at least in straightforward implementations. Yet, the interaction of a vortex beam with a curved antiguide produces interesting effects, namely a small but finite displacement of the optical energy center-of-mass and the creation of a symmetrical vortex–antivortex pair on the exterior of the antiguide.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic,2006).
  2. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  3. J. E. Molloy and M. J. Padgett, Contemp. Phys. 43, 241 (2002).
    [CrossRef]
  4. K. T. Gahagan and G. A. Swartzlander, Opt. Lett. 21, 827 (1996).
    [CrossRef]
  5. A. M. Yao and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).
    [CrossRef]
  6. V. I. Kruglov and R. A. Vlasov, Phys. Lett. A 111, 401 (1985).
    [CrossRef]
  7. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
    [CrossRef]
  8. Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
    [CrossRef]
  9. M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).
  10. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A 6, S162 (2004).
    [CrossRef]
  11. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).
  12. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, Opt. Express 14, 3724 (2006).
    [CrossRef]
  13. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, Opt. Express 19, 4085 (2011).
    [CrossRef]
  14. Y. V. Izdebskaya, A. S. Desyatnikov, G. Assanto, and Y. S. Kivshar, Opt. Express 19, 21457 (2011).
    [CrossRef]
  15. R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
    [CrossRef]
  16. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
    [CrossRef]
  17. Z. Xu, N. F. Smyth, A. A. Minzoni, and Y. S. Kivshar, Opt. Lett. 34, 1414 (2009).
    [CrossRef]

2012 (2)

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
[CrossRef]

2011 (3)

2009 (1)

2006 (1)

2005 (1)

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).

2004 (1)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A 6, S162 (2004).
[CrossRef]

2002 (1)

J. E. Molloy and M. J. Padgett, Contemp. Phys. 43, 241 (2002).
[CrossRef]

2001 (1)

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).

1998 (1)

Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
[CrossRef]

1997 (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

1996 (1)

1986 (1)

1985 (1)

V. I. Kruglov and R. A. Vlasov, Phys. Lett. A 111, 401 (1985).
[CrossRef]

Alexeyev, C. N.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A 6, S162 (2004).
[CrossRef]

Ambrosio, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
[CrossRef]

Ashkin, A.

Assanto, G.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

Y. V. Izdebskaya, A. S. Desyatnikov, G. Assanto, and Y. S. Kivshar, Opt. Express 19, 21457 (2011).
[CrossRef]

Barboza, R.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

Bjorkholm, J.

Borbone, F.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
[CrossRef]

Bortolozzo, U.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

Chigrinov, V.

Chu, S.

Clerc, M. G.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

Desyatnikov, A. S.

Du, T.

Dziedzic, J.

Fadeyeva, T.

Gahagan, K. T.

Gorshkov, V. N.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Heckenberg, N. R.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Izdebskaya, Y. V.

Kivshar, Y. S.

Krolikowski, W.

Kruglov, V. I.

V. I. Kruglov and R. A. Vlasov, Phys. Lett. A 111, 401 (1985).
[CrossRef]

Luther-Davies, B.

Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
[CrossRef]

Maddalena, P.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
[CrossRef]

Malos, J. T.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Marrucci, L.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
[CrossRef]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, Opt. Express 19, 4085 (2011).
[CrossRef]

Minzoni, A. A.

Molloy, J. E.

J. E. Molloy and M. J. Padgett, Contemp. Phys. 43, 241 (2002).
[CrossRef]

Murauski, A.

Neshev, D. N.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic,2006).

Padgett, M. J.

A. M. Yao and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).
[CrossRef]

J. E. Molloy and M. J. Padgett, Contemp. Phys. 43, 241 (2002).
[CrossRef]

Residori, S.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

Roviello, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
[CrossRef]

Santamato, E.

Shvedov, V.

Slussarenko, S.

Smyth, N. F.

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Swartzlander, G. A.

Torner, L.

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Vidal, E.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

Vlasov, R. A.

V. I. Kruglov and R. A. Vlasov, Phys. Lett. A 111, 401 (1985).
[CrossRef]

Volyar, A.

Volyar, A. V.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A 6, S162 (2004).
[CrossRef]

Xu, Z.

Yao, A. M.

Yavorsky, M. A.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A 6, S162 (2004).
[CrossRef]

Adv. Opt. Photon. (1)

Contemp. Phys. (1)

J. E. Molloy and M. J. Padgett, Contemp. Phys. 43, 241 (2002).
[CrossRef]

J. Opt. A (1)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A 6, S162 (2004).
[CrossRef]

Nat. Commun. (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Lett. A (1)

V. I. Kruglov and R. A. Vlasov, Phys. Lett. A 111, 401 (1985).
[CrossRef]

Phys. Rep. (1)

Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
[CrossRef]

Phys. Rev. A (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal, M. G. Clerc, and S. Residori, Phys. Rev. Lett. 109, 143901 (2012).
[CrossRef]

Prog. Opt. (2)

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).

Other (1)

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic,2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Interaction of an optical vortex with charge m=1 and a Gaussian positive waveguide. (a) Intensity evolution in a longitudinal cross-section (xz plane), with intensity-scale in false colors. (b) Displacement Δx=x(z)X of the waveguide center (dashed–dotted blue line), light intensity peak (solid red line) and average center (dotted green line) versus z. The location of the numerical maximum switches periodically between the symmetrical peaks on the two sides of the waveguide center. For z>230 the maximum location is not stable due to the strong radiated energy. (c) Intensity distribution in a transverse cross-section at the exit plane z=300. (d) Optical phase distribution in the same plane (phase-scale in false colors). The simulation parameters are: A=1, w=10, W=3, R=500, X=50.

Fig. 2.
Fig. 2.

Interaction of an optical vortex with charge m=1 with a Gaussian antiguide. (a) Intensity evolution in a longitudinal cross-section (xz plane), with intensity scale in false colors. (b) Displacement Δx=x(z)X of the waveguide center (dashed–dotted blue line), intensity peak (red solid line), and average center (dotted green line) versus z (the latter is rescaled by a factor ×10). The red curve for small z is omitted because it switches randomly between the two symmetrical peaks on the two sides of the waveguide center. (c) Intensity distribution in a transverse cross-section at the exit plane z=300. (d) Optical phase distribution in the same plane with phase scale in false colors. The simulation parameters are: A=1, w=10, W=3, R=500, and X=50.

Fig. 3.
Fig. 3.

Same as Fig. 2, but for an optical vortex with charge m=3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u(r,θ)=ar|m|er2w2+imθ.
iuz+12T2u+2G(x,y,z)u=0.
G=π(n2n02)L2n0λπ(nn0)Lλ,
G(x,y,z)=Aey2+[xS(z)]2W2,
x=x|u|2dxdy|u|2dxdy.

Metrics