Abstract

We report on the generation of picosecond pulses at 2 μm directly from a gain-switched discrete-mode diode laser and their amplification in a multistage thulium-doped fiber amplifier chain. The system is capable of operating at repetition rates in the range of 2 MHz–1.5 GHz without change of configuration, delivering high-quality 33 ps pulses with up to 3.5 μJ energy and 100 kW peak power, as well as up to 18 W of average power. These results represent a major technological advance and a 1 order of magnitude increase in peak power and pulse energy compared to existing picosecond sources at 2 μm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [CrossRef]
  2. K. K. Chen, J. H. Price, S. U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, Opt. Express 18, 14385 (2010).
    [CrossRef]
  3. S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, Opt. Express 19, 1854 (2011).
    [CrossRef]
  4. P. Wan, L.-M. Yang, and J. Liu, Opt. Express 21, 1798(2013).
    [CrossRef]
  5. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 97 (2013).
    [CrossRef]
  6. P. Hübner, C. Kieleck, S. D. Jackson, and M. Eichhorn, Opt. Lett. 36, 2483 (2011).
    [CrossRef]
  7. J. Liu, Q. Wang, and P. Wang, Opt. Express 20, 22442 (2012).
    [CrossRef]
  8. Y. Tang, L. Xu, Y. Yang, and J. Xu, Opt. Express 18, 22964 (2010).
    [CrossRef]
  9. R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
    [CrossRef]
  10. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, Opt. Express 21, 9289 (2013).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  12. P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
    [CrossRef]

2013 (3)

2012 (3)

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[CrossRef]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
[CrossRef]

J. Liu, Q. Wang, and P. Wang, Opt. Express 20, 22442 (2012).
[CrossRef]

2011 (3)

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, Opt. Express 19, 1854 (2011).
[CrossRef]

P. Hübner, C. Kieleck, S. D. Jackson, and M. Eichhorn, Opt. Lett. 36, 2483 (2011).
[CrossRef]

2010 (2)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Alam, S. U.

Anandarajah, P. M.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Barry, L. P.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Byrne, D.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
[CrossRef]

Chen, K. K.

Daniel, J. M. O.

Eichhorn, M.

Frede, M.

Hayes, J. R.

Heidt, A. M.

Herbert, C.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
[CrossRef]

Hübner, P.

Jackson, S. D.

Jansen, F.

Jauregui, C.

Jung, Y.

Kanzelmeyer, S.

Kelly, B.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
[CrossRef]

Kieleck, C.

Kracht, D.

Latkowski, S.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Li, Z.

Limpert, J.

Lin, D.

Liu, J.

Maher, R.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Malinowski, A.

Murdoch, S. G.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Neumann, J.

O’Carroll, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
[CrossRef]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

O’Gorman, J.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Phelan, R.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
[CrossRef]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Price, J. H.

Richardson, D. J.

Sayinc, H.

Somers, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, IEEE Photon. Technol. Lett. 24, 652 (2012).
[CrossRef]

Stutzki, F.

Tang, Y.

Theeg, T.

Tünnermann, A.

Wan, P.

Wang, P.

Wang, Q.

Xu, J.

Xu, L.

Xu, Y. Q.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, IEEE Photon. J. 3, 112 (2011).
[CrossRef]

Yang, L.-M.

Yang, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the amplifier system. LD, laser diode; LMA-TDF, large mode area thulium-doped fiber; WDM, wavelength-division multiplexer; FBG, fiber Bragg grating; DM, dichroic mirror.

Fig. 2.
Fig. 2.

(a) Emission spectra of the discrete mode diode in CW, unfiltered GS, and spectrally filtered GS operation with 0.05 nm spectral resolution. Output spectra of the amplifier system at repetition rates of (b) 2 MHz and (c) 1.5 GHz are shown with 0.5 nm spectral resolution.

Fig. 3.
Fig. 3.

Maximum pulse energy available from the amplifier and OSNR in dependence on the repetition rate.

Fig. 4.
Fig. 4.

Background-free autocorrelation traces recorded after the second preamplifier and at the system output, both at a 2 MHz repetition rate. The inset shows the bandwidth-limited oscilloscope trace.

Metrics