Abstract

We study the coupling mechanism between a high refractive index contrast waveguide and a plasmonic thin-film waveguide in the IR range. We also propose a novel design of a vertical coupler based on loading the plasmonic waveguide with a high refractive index contrast medium on each side. We achieve a coupling efficiency and an insertion loss of about 95% and 0.2 dB, respectively, with a coupling length of only 2.85 μm at the working wavelength of 1.55 μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1998).
  3. R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, Opt. Lett. 36, 903 (2011).
    [CrossRef]
  4. M. A. Green and S. Pillai, Nat. Photonics 6, 130 (2012).
    [CrossRef]
  5. M. Grande, M. A. Vincenti, T. Stomeo, G. Morea, R. Marani, V. Marrocco, V. Petruzzelli, A. D’Orazio, R. Cingolani, M. De, D. Vittorio de Ceglia, and M. Scalora, Opt. Express 19, 21385 (2011).
    [CrossRef]
  6. M. Grande, R. Marani, F. Portincasa, G. Morea, V. Petruzzelli, A. D’Orazio, V. Marrocco, D. de Ceglia, and M. A. Vincenti, Sens. Actuators B 160, 1056 (2011).
    [CrossRef]
  7. Q. Min, C. Chen, P. Berini, and R. Gordon, Opt. Express 18, 19009 (2010).
    [CrossRef]
  8. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
    [CrossRef]
  9. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, Nano Lett. 8, 3041 (2008).
    [CrossRef]
  10. R. Kotynski, T. Stefaniuk, and A. Pastuszczak, Appl. Phys. A 103, 905 (2011).
    [CrossRef]
  11. M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
    [CrossRef]
  12. A. M. Lakhani, M. K. Kim, E. K. Lau, and M. C. Wu, Opt. Express 19, 18237 (2011).
    [CrossRef]
  13. K. Q. Le and P. Bienstman, Plasmonics 6, 53 (2011).
    [CrossRef]
  14. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982).
  15. P. Berini, Adv. Opt. Photon. 1, 484 (2009).
    [CrossRef]
  16. J. Guo and R. Adato, Opt. Express 14, 12409 (2006).
    [CrossRef]
  17. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  18. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
    [CrossRef]
  19. F. Liu, R. Y. Wan, Y. D. Huang, and J. D. Peng, Opt. Lett. 34, 2697 (2009).
    [CrossRef]
  20. F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
    [CrossRef]

2012

M. A. Green and S. Pillai, Nat. Photonics 6, 130 (2012).
[CrossRef]

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

2011

2010

Q. Min, C. Chen, P. Berini, and R. Gordon, Opt. Express 18, 19009 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

2009

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
[CrossRef]

F. Liu, R. Y. Wan, Y. D. Huang, and J. D. Peng, Opt. Lett. 34, 2697 (2009).
[CrossRef]

P. Berini, Adv. Opt. Photon. 1, 484 (2009).
[CrossRef]

2008

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, Nano Lett. 8, 3041 (2008).
[CrossRef]

2006

1998

Adato, R.

Akozbek, N.

M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
[CrossRef]

Berini, P.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Bienstman, P.

K. Q. Le and P. Bienstman, Plasmonics 6, 53 (2011).
[CrossRef]

Bloemer, M. J.

M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
[CrossRef]

Cappeddu, M. G.

M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
[CrossRef]

Chen, C.

Cingolani, R.

D’Orazio, A.

M. Grande, R. Marani, F. Portincasa, G. Morea, V. Petruzzelli, A. D’Orazio, V. Marrocco, D. de Ceglia, and M. A. Vincenti, Sens. Actuators B 160, 1056 (2011).
[CrossRef]

M. Grande, M. A. Vincenti, T. Stomeo, G. Morea, R. Marani, V. Marrocco, V. Petruzzelli, A. D’Orazio, R. Cingolani, M. De, D. Vittorio de Ceglia, and M. Scalora, Opt. Express 19, 21385 (2011).
[CrossRef]

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, Opt. Lett. 36, 903 (2011).
[CrossRef]

M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
[CrossRef]

De, M.

de Ceglia, D.

M. Grande, R. Marani, F. Portincasa, G. Morea, V. Petruzzelli, A. D’Orazio, V. Marrocco, D. de Ceglia, and M. A. Vincenti, Sens. Actuators B 160, 1056 (2011).
[CrossRef]

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, Opt. Lett. 36, 903 (2011).
[CrossRef]

de Ceglia, D. Vittorio

Djurisic, A. B.

Elazar, J. M.

Feng, J.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Gordon, R.

Grande, M.

Green, M. A.

M. A. Green and S. Pillai, Nat. Photonics 6, 130 (2012).
[CrossRef]

Guo, J.

Huang, Y.

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

Huang, Y. D.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Kim, M. K.

Kotynski, R.

R. Kotynski, T. Stefaniuk, and A. Pastuszczak, Appl. Phys. A 103, 905 (2011).
[CrossRef]

Lakhani, A. M.

Lau, E. K.

Le, K. Q.

K. Q. Le and P. Bienstman, Plasmonics 6, 53 (2011).
[CrossRef]

Li, Y. X.

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

Liu, F.

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

F. Liu, R. Y. Wan, Y. D. Huang, and J. D. Peng, Opt. Lett. 34, 2697 (2009).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

Marani, R.

Marcuse, D.

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982).

Marrocco, V.

Mehta, V.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Min, Q.

Miura, Y.

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

Morea, G.

M. Grande, R. Marani, F. Portincasa, G. Morea, V. Petruzzelli, A. D’Orazio, V. Marrocco, D. de Ceglia, and M. A. Vincenti, Sens. Actuators B 160, 1056 (2011).
[CrossRef]

M. Grande, M. A. Vincenti, T. Stomeo, G. Morea, R. Marani, V. Marrocco, V. Petruzzelli, A. D’Orazio, R. Cingolani, M. De, D. Vittorio de Ceglia, and M. Scalora, Opt. Express 19, 21385 (2011).
[CrossRef]

Ohnishi, D.

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Pacifici, D.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Palmore, G. T.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Pastuszczak, A.

R. Kotynski, T. Stefaniuk, and A. Pastuszczak, Appl. Phys. A 103, 905 (2011).
[CrossRef]

Peng, J. D.

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

F. Liu, R. Y. Wan, Y. D. Huang, and J. D. Peng, Opt. Lett. 34, 2697 (2009).
[CrossRef]

Petruzzelli, V.

Pillai, S.

M. A. Green and S. Pillai, Nat. Photonics 6, 130 (2012).
[CrossRef]

Portincasa, F.

M. Grande, R. Marani, F. Portincasa, G. Morea, V. Petruzzelli, A. D’Orazio, V. Marrocco, D. de Ceglia, and M. A. Vincenti, Sens. Actuators B 160, 1056 (2011).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1998).

Rakic, A. D.

Rhieu, S. Y.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Roelke, A.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Scalora, M.

Siu, V. S.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Srituravanich, W.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, Nano Lett. 8, 3041 (2008).
[CrossRef]

Stefaniuk, T.

R. Kotynski, T. Stefaniuk, and A. Pastuszczak, Appl. Phys. A 103, 905 (2011).
[CrossRef]

Stomeo, T.

Sun, C.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, Nano Lett. 8, 3041 (2008).
[CrossRef]

Vincenti, M. A.

M. Grande, M. A. Vincenti, T. Stomeo, G. Morea, R. Marani, V. Marrocco, V. Petruzzelli, A. D’Orazio, R. Cingolani, M. De, D. Vittorio de Ceglia, and M. Scalora, Opt. Express 19, 21385 (2011).
[CrossRef]

M. Grande, R. Marani, F. Portincasa, G. Morea, V. Petruzzelli, A. D’Orazio, V. Marrocco, D. de Ceglia, and M. A. Vincenti, Sens. Actuators B 160, 1056 (2011).
[CrossRef]

R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, Opt. Lett. 36, 903 (2011).
[CrossRef]

M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
[CrossRef]

Wan, R. Y.

F. Liu, R. Y. Wan, Y. D. Huang, and J. D. Peng, Opt. Lett. 34, 2697 (2009).
[CrossRef]

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

Wang, Y.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, Nano Lett. 8, 3041 (2008).
[CrossRef]

Wu, M. C.

Zhang, X.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, Nano Lett. 8, 3041 (2008).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. A

R. Kotynski, T. Stefaniuk, and A. Pastuszczak, Appl. Phys. A 103, 905 (2011).
[CrossRef]

Appl. Phys. Lett.

F. Liu, R. Y. Wan, Y. X. Li, Y. Huang, Y. Miura, D. Ohnishi, and J. D. Peng, Appl. Phys. Lett. 95, 091104 (2009).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

J. Appl. Phys.

M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, J. Appl. Phys. 105103103 (2009).
[CrossRef]

Nano Lett.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012).
[CrossRef]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, Nano Lett. 8, 3041 (2008).
[CrossRef]

Nat. Photonics

M. A. Green and S. Pillai, Nat. Photonics 6, 130 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Plasmonics

K. Q. Le and P. Bienstman, Plasmonics 6, 53 (2011).
[CrossRef]

Sens. Actuators B

M. Grande, R. Marani, F. Portincasa, G. Morea, V. Petruzzelli, A. D’Orazio, V. Marrocco, D. de Ceglia, and M. A. Vincenti, Sens. Actuators B 160, 1056 (2011).
[CrossRef]

Other

D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Effective refractive index curves for the SRSPP (green dashed curve), LRSPP (yellow line) and single-interface SPP (blue dashed–dotted line) of a 30 nm gold film plasmonic waveguide (PWG) embedded in SiO2 and the curve for a single gold–SiO2 interface (black dotted line). The red solid curve with square markers represents the neff of a 220 nm thick Si slab waveguide embedded in SiO2; inset shows neff for the slab waveguide when its width w varies from 160 to 240 nm at 1.55 μm. (b) neff curves for the SRSPP (green dashed curve) and LRSPP (yellow curve) of a 30 nm gold film plasmonic waveguide sandwiched by two layers of Si of thickness of s embedded in SiO2 at the wavelength of 1.55 μm. The inset shows the propagation length for the SRSPP (green dashed curve) and LRSPP (yellow curve) of a 30 nm gold film plasmonic waveguide sandwiched by two layers of silicon of thickness of s embedded in SiO2 at the wavelength of 1.55 μm.

Fig. 2.
Fig. 2.

Sketch of the coupler. On each waveguide the profiles of the transversal magnetic fields are represented. Blue and red curves in the PWG correspond to the LRSPP (lower curve) and SRSPP (upper curve) mode profiles, respectively. Orange curve on the DWG corresponds to the fundamental TM mode.

Fig. 3.
Fig. 3.

(a) Effective refractive index of the even (solid curves) and odd (dashed curves) supermodes of the coupled structure as s and D (from 0.3 to 0.6 μm) change; (b) absolute value of the difference between effective refractive indices of the even and the odd supermodes when s=89.23nm and D is varied from 0.3 to 0.6 μm. The solid black line follows the minima. (c) Magnetic field distribution of even (dark blue curve) and odd (light green curve) supermodes for D=0.3μm.

Fig. 4.
Fig. 4.

(a) Coupling length calculated by CMT (dark blue solid curve) and by FDTD (light green solid curve) methods and coupling efficiency (red dashed curve) when D is varied; (b) coupling efficiency estimated in the range of interest for various values of D; (c) Poynting vector distribution at yin (blue dashed curve) and at ymax (red solid curve); and (d) Poynting vector distribution along the structure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Lc=|ymaxyin|,
η=100xcross|S(x,ymax)|dx|S(x,ymax)|dx,
I.L.=10Log10(|S(x,ymax)|dx|S(x,yin)|dx),
LC=πβevenβodd=λ02(nevennodd),

Metrics