Abstract

This letter describes a lidar retrieval technique that uses the transmittance ratio as a constraint to determine an average lidar ratio as well as extinction and backscatter coefficients of transparent cirrus clouds. The cloud transmittance ratio is directly obtained from two adjacent elastic lidar backscatter signals. The technique can be applied to cirrus measurements where neither the molecular scattering dominant signals above and below the cloud layer are found nor cloudfree reference profiles are available. The technique has been tested with simulated lidar signals and applied to backscatter lidar measurements at Hampton University, Hampton, Virginia.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, Mon. Weather Rev. 114, 1167 (1986).
    [CrossRef]
  2. B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
    [CrossRef]
  3. V. Ramanathan and W. Collins, Nature 351, 27 (1991).
    [CrossRef]
  4. A. Ansmann, M. Riebesell, and C. Weitkamp, Opt. Lett. 15, 746 (1990).
    [CrossRef]
  5. C. J. Grund and E. W. Eloranta, Mon. Weather Rev. 118, 2344 (1990).
    [CrossRef]
  6. Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
    [CrossRef]
  7. M. D. Guasta, Appl. Opt. 37, 5522 (1998).
    [CrossRef]
  8. D. Winker, W. Hunt, and M. McGill, Geophys. Res. Lett. 34, L19803 (2007).
    [CrossRef]
  9. M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
    [CrossRef]
  10. K. Sassen and B. S. Cho, J. Appl. Meteorol. 31, 1275 (1992).
    [CrossRef]
  11. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, Appl. Opt. 31, 7113 (1992).
    [CrossRef]
  12. A. Young, Appl. Opt. 34, 7019 (1995).
    [CrossRef]
  13. J. Taylor, W. Randel, and E. Jensen, Atmos. Chem. Phys. 11, 10085 (2011).
    [CrossRef]
  14. Z. Tao, M. McCormick, D. Wu, Z. Liu, and M. Vaughan, Appl. Opt. 47, 1478 (2008).
    [CrossRef]
  15. B. Cadet, V. Giraud, M. Haeffelin, P. Keckhut, A. Rechou, and S. Baldy, Appl. Opt. 44, 1726 (2005).
    [CrossRef]
  16. S. Elouragini and P. H. Flamant, Appl. Opt. 35, 1512(1996).
    [CrossRef]

2011 (1)

J. Taylor, W. Randel, and E. Jensen, Atmos. Chem. Phys. 11, 10085 (2011).
[CrossRef]

2010 (1)

M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

2008 (1)

2007 (1)

D. Winker, W. Hunt, and M. McGill, Geophys. Res. Lett. 34, L19803 (2007).
[CrossRef]

2005 (1)

2002 (1)

B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
[CrossRef]

1999 (1)

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

1998 (1)

1996 (1)

1995 (1)

1992 (2)

1991 (1)

V. Ramanathan and W. Collins, Nature 351, 27 (1991).
[CrossRef]

1990 (2)

A. Ansmann, M. Riebesell, and C. Weitkamp, Opt. Lett. 15, 746 (1990).
[CrossRef]

C. J. Grund and E. W. Eloranta, Mon. Weather Rev. 118, 2344 (1990).
[CrossRef]

1986 (1)

K. N. Liou, Mon. Weather Rev. 114, 1167 (1986).
[CrossRef]

Ansmann, A.

Baldy, S.

Cadet, B.

Chambers, L.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
[CrossRef]

Cho, B. S.

K. Sassen and B. S. Cho, J. Appl. Meteorol. 31, 1275 (1992).
[CrossRef]

Collins, W.

V. Ramanathan and W. Collins, Nature 351, 27 (1991).
[CrossRef]

Eloranta, E. W.

C. J. Grund and E. W. Eloranta, Mon. Weather Rev. 118, 2344 (1990).
[CrossRef]

Elouragini, S.

Flamant, P. H.

Giraud, V.

Grund, C. J.

C. J. Grund and E. W. Eloranta, Mon. Weather Rev. 118, 2344 (1990).
[CrossRef]

Guasta, M. D.

Haeffelin, M.

Hu, Y.

M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
[CrossRef]

Hunt, W.

D. Winker, W. Hunt, and M. McGill, Geophys. Res. Lett. 34, L19803 (2007).
[CrossRef]

Jensen, E.

J. Taylor, W. Randel, and E. Jensen, Atmos. Chem. Phys. 11, 10085 (2011).
[CrossRef]

Keckhut, P.

Lin, B.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
[CrossRef]

Liou, K. N.

K. N. Liou, Mon. Weather Rev. 114, 1167 (1986).
[CrossRef]

Liu, Z.

M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Z. Tao, M. McCormick, D. Wu, Z. Liu, and M. Vaughan, Appl. Opt. 47, 1478 (2008).
[CrossRef]

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

McCormick, M.

McGill, M.

D. Winker, W. Hunt, and M. McGill, Geophys. Res. Lett. 34, L19803 (2007).
[CrossRef]

McGill, M. J.

M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Michaelis, W.

Obland, M. D.

M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Ramanathan, V.

V. Ramanathan and W. Collins, Nature 351, 27 (1991).
[CrossRef]

Randel, W.

J. Taylor, W. Randel, and E. Jensen, Atmos. Chem. Phys. 11, 10085 (2011).
[CrossRef]

Rechou, A.

Riebesell, M.

Sassen, K.

K. Sassen and B. S. Cho, J. Appl. Meteorol. 31, 1275 (1992).
[CrossRef]

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

Tao, Z.

Taylor, J.

J. Taylor, W. Randel, and E. Jensen, Atmos. Chem. Phys. 11, 10085 (2011).
[CrossRef]

Vaughan, M.

Vaughan, M. A.

M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Wandinger, U.

Weitkamp, C.

Wielicki, B.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
[CrossRef]

Winker, D.

D. Winker, W. Hunt, and M. McGill, Geophys. Res. Lett. 34, L19803 (2007).
[CrossRef]

Wu, D.

Xu, L. M.

B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
[CrossRef]

Young, A.

Appl. Opt. (6)

Atmos. Chem. Phys. (1)

J. Taylor, W. Randel, and E. Jensen, Atmos. Chem. Phys. 11, 10085 (2011).
[CrossRef]

Geophys. Res. Lett. (1)

D. Winker, W. Hunt, and M. McGill, Geophys. Res. Lett. 34, L19803 (2007).
[CrossRef]

J. Appl. Meteorol. (1)

K. Sassen and B. S. Cho, J. Appl. Meteorol. 31, 1275 (1992).
[CrossRef]

J. Clim. (1)

B. Lin, B. Wielicki, L. Chambers, Y. Hu, and L. M. Xu, J. Clim. 15, 3 (2002).
[CrossRef]

J. Geophys. Res. (1)

M. A. Vaughan, Z. Liu, M. J. McGill, Y. Hu, and M. D. Obland, J. Geophys. Res. 115, D14206 (2010).
[CrossRef]

Mon. Weather Rev. (2)

K. N. Liou, Mon. Weather Rev. 114, 1167 (1986).
[CrossRef]

C. J. Grund and E. W. Eloranta, Mon. Weather Rev. 118, 2344 (1990).
[CrossRef]

Nature (1)

V. Ramanathan and W. Collins, Nature 351, 27 (1991).
[CrossRef]

Opt. Eng. (1)

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Two modeled cloud extinction profiles. (b) Two simulated adjacent range-corrected lidar signals. (c) Performance functions for backward (dotted curve) and forward retrieval (solid curve). (d) Retrieval errors in cloud lidar ratios as a function of SNR at the cloud top. (The range resolution is 7.5 m. The cloud lidar ratio is set to be 20 sr. The wavelength is 532 nm. Range-dependent Gaussian random noise is added to the simulated lidar signals and the SNR at the cloud top is 15.)

Fig. 2.
Fig. 2.

(a) Two adjacent range-corrected lidar signals measured by the HU lidar at 2003 and 2005 on Nov. 01 2010, (b) the ratio profile of these two signals, (c) the performance function calculated using Eq. (7), and (d) time series of lidar ratios derived using the method developed in this paper and the method described in [12] for comparison.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

X(z,t1)=C[βc(z,t1)+βa(z,t1)+βm(z,t1)]e{20z[η(z,t1)αc(z,t1)+αa(z,t1)+αm(z,t1)]dz},
X(z,t2)=C[βc(z,t2)+βa(z,t2)+βm(z,t2)]e{20z[η(z,t2)αc(z,t2)+αa(z,t2)+αm(z,t2)]dz},
R(z)=[βc(z,t1)+βa(z,t1)+βm(z,t1)]e{20z[η(z,t1)αc(z,t1)+αa(z,t1)+αm(z,t1)]dz}[βc(z,t2)+βa(z,t2)+βm(z,t2)]e{20z[η(z,t2)αc(z,t2)+αa(z,t2)+αm(z,t2)]dz}.
R(cb3)=e{20cb3[αa(z,t1)+αm(z,t1)]dz}e{20cb3[αa(z,t2)+αm(z,t2)]dz},
R(ct3)=e{20ct3[αa(z,t1)+αm(z,t1)]dz}e{2cb1ct1η(z,t1)αc(z,t1)dz}e{20ct3[αa(z,t2)+αm(z,t2)]dz}e{2cb2ct2η(z,t2)αc(z,t2)dz}=R(cb3)e{2cb3ct3[αa(z,t1)+αm(z,t1)]dz}e{2cb1ct1η(z,t1)αc(z,t1)dz}e{2cb3ct3[αa(z,t2)+αm(z,t2)]dz}e{2cb2ct2η(z,t2)αc(z,t2)dz}.
RT=e{2cb1ct1η(z,t1)αc(z,t1)dz}e{2cb2ct2η(z,t2)αc(z,t2)dz}=R(ct3)e{2cb3ct3[αa(z,t2)+αm(z,t2)]dz}R(cb3)e{2cb3ct3[αa(z,t1)+αm(z,t1)]dz}R(ct3)R(cb3).
P(Sc)=|RT(Sc)RT|.

Metrics