Abstract

We model a laterally coupled Franz-Keldysh add-drop ring modulator designed to overcome the C-band indirect absorption of silicon-germanium. Although our concept is based on loss-sensitive interferometry, it utilizes the same highly absorptive germanium-rich compositions geared toward complementary metal-oxide semiconductor (CMOS) photodetectors and electroabsorption modulators. The proposed device can be integrated with passive waveguide networks in which the carrier plasma modulation mechanism is ineffective. In addition, unlike previous silicon-germanium modulator schemes, complex butt-coupling between the passive transport and the active silicon-germanium waveguides is not required. Instead, the optical mode remains guided within the transport waveguide, minimizing transition losses.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical modulator on silicon employing germanium quantum wells

Jonathan E. Roth, Onur Fidaner, Rebecca K. Schaevitz, Yu-Hsuan Kuo, Theodore I. Kamins, James S. Harris, and David A. B. Miller
Opt. Express 15(9) 5851-5859 (2007)

Stress tuning of the fundamental absorption edge of pure germanium waveguides

L. M. Nguyen, R. Kuroyanagi, T. Tsuchizawa, Y. Ishikawa, K. Yamada, and K. Wada
Opt. Express 23(14) 18487-18492 (2015)

Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications

Qingfang Zhang, Yan Liu, Jing Yan, Chunfu Zhang, Yue Hao, and Genquan Han
Opt. Express 23(6) 7924-7932 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription