Abstract

We develop and test a thermally activated state transition technique for ultraweak force measurement. As a force sensor, the technique was demonstrated on a classical Brownian bead immersed in water and restrained by a bistable optical trap. A femto-Newton-level flow force imposed on this sensor was measured by monitoring changes in the transition rates of the bead hopping between two energy states. The treatment of thermal disturbances as a requirement instead of a limiting factor is the major feature of the technique, and provides a new strategy by which to measure other ultraweak forces beyond the thermal noise limit.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femto-Newton light force measurement at the thermal noise limit

F. Mueller, S. Heugel, and L. J. Wang
Opt. Lett. 33(6) 539-541 (2008)

Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers

Markus Klein, Magnus Andersson, Ove Axner, and Erik Fällman
Appl. Opt. 46(3) 405-412 (2007)

A force detection technique for single-beam optical traps based on direct measurement of light momentum changes

Arnau Farré and Mario Montes-Usategui
Opt. Express 18(11) 11955-11968 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription