Abstract

Herein we propose, theoretically investigate, and numerically demonstrate a compact design for a vertical emitter at a wavelength of 1.5 μm based on nanophotonic aperture antennas coupled to a dielectric waveguide. The structure utilizes a plasmonic antenna placed above a Si3N4 waveguide with a ground plane for breaking the up—down symmetry and increasing the emission efficiency. Three-dimensional (3-D) finite-difference time-domain (FDTD) simulations reveal that up to 60% vertical emission efficiency is possible in a structure only four wavelengths long with a 3 dB bandwidth of over 300 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fan, M. A. Popović, and F. X. Kärtner, in OSA/CLEO (2007), paper CTuDD3.
  2. B. Wang, J. Jiang, and G. P. Nordin, Photon. Tech. Lett. 17, 9 (2005).
    [CrossRef]
  3. K. Kintaka, Y. Kita, K. Shimizu, H. Matsuoka, S. Ura, and J. Nishii, Opt. Lett. 35, 1989 (2010).
    [CrossRef]
  4. G. Roelkens, D. V. Thourhout, and R. Baets, Opt. Lett. 32, 1495 (2007).
    [CrossRef]
  5. K. V. Acoleyen, H. Rogier, and R. Baets, Opt. Express 18, 13655 (2010).
    [CrossRef]
  6. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, Opt. Express 19, 21595 (2011).
    [CrossRef]
  7. J. Li and N. Engheta, IEEE Aerospace Electron. Syst. Mag. 55, 3018 (2007).
    [CrossRef]
  8. S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. V. Thourhout, and R. Baets, J. Lightwave Technol. 27, 1415 (2009).
    [CrossRef]
  9. H. A. Haus, in Waves and Fields in Optoelectronics, N. Holonyak, ed. (Prentice-Hall, 1984), pp. 197–207.
  10. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
    [CrossRef]
  11. H. A. Haus and W. P. Huang, IEEE Aerospace Electron. Syst. Mag. 79, 1505 (1991).
    [CrossRef]
  12. H. R. Philipp, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1998), pp. 760–774.

2011 (1)

2010 (2)

2009 (1)

2007 (2)

J. Li and N. Engheta, IEEE Aerospace Electron. Syst. Mag. 55, 3018 (2007).
[CrossRef]

G. Roelkens, D. V. Thourhout, and R. Baets, Opt. Lett. 32, 1495 (2007).
[CrossRef]

2005 (1)

B. Wang, J. Jiang, and G. P. Nordin, Photon. Tech. Lett. 17, 9 (2005).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
[CrossRef]

1991 (1)

H. A. Haus and W. P. Huang, IEEE Aerospace Electron. Syst. Mag. 79, 1505 (1991).
[CrossRef]

Acoleyen, K. V.

Baets, R.

Bienstman, P.

Bovington, J. T.

Bowers, J. E.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
[CrossRef]

Coldren, L. A.

Doylend, J. K.

Dubruel, P.

Engheta, N.

J. Li and N. Engheta, IEEE Aerospace Electron. Syst. Mag. 55, 3018 (2007).
[CrossRef]

Fan, M.

M. Fan, M. A. Popović, and F. X. Kärtner, in OSA/CLEO (2007), paper CTuDD3.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
[CrossRef]

H. A. Haus and W. P. Huang, IEEE Aerospace Electron. Syst. Mag. 79, 1505 (1991).
[CrossRef]

H. A. Haus, in Waves and Fields in Optoelectronics, N. Holonyak, ed. (Prentice-Hall, 1984), pp. 197–207.

Heck, M. J. R.

Huang, W. P.

H. A. Haus and W. P. Huang, IEEE Aerospace Electron. Syst. Mag. 79, 1505 (1991).
[CrossRef]

Jiang, J.

B. Wang, J. Jiang, and G. P. Nordin, Photon. Tech. Lett. 17, 9 (2005).
[CrossRef]

Kärtner, F. X.

M. Fan, M. A. Popović, and F. X. Kärtner, in OSA/CLEO (2007), paper CTuDD3.

Kintaka, K.

Kita, Y.

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
[CrossRef]

Li, J.

J. Li and N. Engheta, IEEE Aerospace Electron. Syst. Mag. 55, 3018 (2007).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
[CrossRef]

Matsuoka, H.

Nishii, J.

Nordin, G. P.

B. Wang, J. Jiang, and G. P. Nordin, Photon. Tech. Lett. 17, 9 (2005).
[CrossRef]

Peters, J. D.

Philipp, H. R.

H. R. Philipp, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1998), pp. 760–774.

Popovic, M. A.

M. Fan, M. A. Popović, and F. X. Kärtner, in OSA/CLEO (2007), paper CTuDD3.

Roelkens, G.

Rogier, H.

Schacht, E.

Scheerlinck, S.

Shimizu, K.

Thourhout, D. V.

Ura, S.

Wang, B.

B. Wang, J. Jiang, and G. P. Nordin, Photon. Tech. Lett. 17, 9 (2005).
[CrossRef]

IEEE Aerospace Electron. Syst. Mag. (2)

J. Li and N. Engheta, IEEE Aerospace Electron. Syst. Mag. 55, 3018 (2007).
[CrossRef]

H. A. Haus and W. P. Huang, IEEE Aerospace Electron. Syst. Mag. 79, 1505 (1991).
[CrossRef]

J. Lightwave Technol. (2)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Technol. 15, 6 (1997).
[CrossRef]

S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. V. Thourhout, and R. Baets, J. Lightwave Technol. 27, 1415 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Photon. Tech. Lett. (1)

B. Wang, J. Jiang, and G. P. Nordin, Photon. Tech. Lett. 17, 9 (2005).
[CrossRef]

Other (3)

M. Fan, M. A. Popović, and F. X. Kärtner, in OSA/CLEO (2007), paper CTuDD3.

H. A. Haus, in Waves and Fields in Optoelectronics, N. Holonyak, ed. (Prentice-Hall, 1984), pp. 197–207.

H. R. Philipp, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1998), pp. 760–774.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Antenna designs. (a) Side view. (b) Top view of laterally repeating apertures. (c) Longitudinally repeating with period Λ=0.9μm<λ/n. The underlayer of Al represents a ground plane positioned at d=3λ/4n (680 nm) from the emitter metal.

Fig. 2.
Fig. 2.

3-D FDTD ring-down simulation of the electric field (and its exponential envelope) for a single aperture resonator without (black) and with (gray) a waveguide. The fields (i.e., lateral electric fields) were taken from the aperture center.

Fig. 3.
Fig. 3.

(a) Simulated vertical emission for structures with ground-plane: (blue dash-dotted) single aperture, (dashed green) three apertures arranged laterally to the waveguide direction, (solid cyan) 3×2 array design to emit exactly to zenith, (magenta solid-dots) 3×2 array design for 10° backward emission, (red dashed-line-dots) 3×6 array design for 5° backward emission and (black line-Xs) ohmic losses of 3×6 array. (b) The simulated 3×6 structure with the time integrated field box around it. (c) Far field pattern of the same structure at λ=1550nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dadt=(jω01τ)a+μs,
1τ=1τe+1τr+1τo,
a=μsj(ωω0)+1/τ.
12ReE*·JdV=14(aer)*·(jωΔεsewg)dV+c.c.,
d|a|2dt=2τaa*+μa*s+μ*as*,
μ=j4ωΔεer*·ewgdv.
a(t)=a(0)exp(jω0tt/τ).

Metrics