Abstract

A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  2. P. Picart, P. Tankam, D. Mounier, Z. Peng, and J. Li, Opt. Express 17, 9145 (2009).
    [CrossRef]
  3. N. Demoli, D. Vukicevic, and M. Torzynski, Opt. Express 11, 767 (2003).
    [CrossRef]
  4. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, Opt. Lett. 30, 144 (2005).
    [CrossRef]
  5. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, Opt. Lett. 29, 854 (2004).
    [CrossRef]
  6. S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. De Nicola, and A. Finizio, Opt. Express 15, 9394 (2007).
    [CrossRef]
  7. P. Picart, D. Mounier, and J. M. Desse, Opt. Lett. 33, 276 (2008).
    [CrossRef]
  8. P. Xia, Y. Shimozato, Y. Ito, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Appl. Opt. 50, H177 (2011).
    [CrossRef]
  9. L. Yu and M. K. Kim, Opt. Lett. 31, 897 (2006).
    [CrossRef]
  10. J. Kato, I. Yamaguchi, and T. Matsumura, Opt. Lett. 27, 1403 (2002).
    [CrossRef]
  11. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, Opt. Express 15, 14591 (2007).
    [CrossRef]
  12. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, Opt. Express 16, 9753 (2008).
    [CrossRef]
  13. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, J. Disp Tech. 4, 97 (2008).
    [CrossRef]
  14. J. Zhao, H. Jiang, and J. Di, Opt. Express 16, 2514 (2008).
    [CrossRef]
  15. M. Paturzo, P. Memmolo, A. Finizio, R. Nasanen, T. J. Naughton, and P. Ferraro, Opt. Express 18, 8806 (2010).
    [CrossRef]
  16. B. Potenz and T. S. Lee, J. Opt. Soc. Am. A 20, 1292 (2003).
    [CrossRef]

2011 (1)

2010 (1)

2009 (1)

2008 (4)

2007 (2)

2006 (1)

2005 (1)

2004 (1)

2003 (2)

2002 (2)

J. Kato, I. Yamaguchi, and T. Matsumura, Opt. Lett. 27, 1403 (2002).
[CrossRef]

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Alfieri, D.

Awatsuji, Y.

Bingham, P. R.

Coppola, G.

De Nicola, S.

Demoli, N.

Desse, J. M.

Di, J.

Ferraro, P.

Finizio, A.

Grilli, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, J. Disp Tech. 4, 97 (2008).
[CrossRef]

P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, Opt. Express 15, 14591 (2007).
[CrossRef]

Hong, S. H.

Ito, Y.

Javidi, B.

Jiang, H.

Juptner, W.

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Kakue, T.

Kato, J.

Kim, M. K.

Kubota, T.

Laporta, P.

Lee, T. S.

Li, J.

Mann, C. J.

Matoba, O.

Matsumura, T.

Memmolo, P.

Miccio, L.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, J. Disp Tech. 4, 97 (2008).
[CrossRef]

P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, Opt. Express 15, 14591 (2007).
[CrossRef]

Mounier, D.

Nasanen, R.

Naughton, T. J.

Nishio, K.

Osellame, R.

Paquit, V. C.

Paturzo, M.

Peng, Z.

Picart, P.

Pierattini, G.

Potenz, B.

Schnars, U.

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Shimozato, Y.

Tahara, T.

Tankam, P.

Tobin, K. W.

Torzynski, M.

Ura, S.

Vukicevic, D.

Xia, P.

Yamaguchi, I.

Yeom, S.

Yu, L.

Zhao, J.

Appl. Opt. (1)

J. Disp Tech. (1)

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, J. Disp Tech. 4, 97 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Supplementary Material (2)

» Media 1: AVI (1847 KB)     
» Media 2: AVI (3075 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Digital reconstructions of the Matryoshka puppet at (a) 623.8 nm and (b) 532 nm. (c) The stretched reconstruction of (b). (d) The matched superimposition of (b) and (c).

Fig. 2.
Fig. 2.

Digital reconstructions of the target at (a) 623.8 nm, (b) 473 nm, and (e) 532 nm. (c) and (d) The stretched reconstructions of (a) and (b), respectively. (f) The matched superimposition (c), (d), and (e).

Fig. 3.
Fig. 3.

Variation of CC vs. the shift for the Red-Green superimposition. (a) and (c) The horizontal variation of the Matryoshka and microtarget, respectively. (b) and (d) Their vertical variations using the maximum values of CC in the horizontal movements (a) and (c), respectively.

Fig. 4.
Fig. 4.

Results of matching algorithm based on correlation maximization. The quantities (r, r1, and r2) shown at the top of the figures are the correlation coefficients between the color reconstructions.

Fig. 5.
Fig. 5.

(a) and (b) magnification of numerical reconstructions of red and green holograms respectively. (c) The gray level superimposition using the coefficient given in Eq. (6). (d), (e), and (f) The corresponding optical reconstructions using an SLM.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

b1(x,y)=ei2πdλ1iλ1dk,lh1(kpx,lpy)eiπλ1d[(xkpx)2+(ylpy)2],
h(αpx,βpy)=h(kγpx,lγpy),
b1(z,w)=ei2πdλ1iγλ1dα,βh(αpx,βpy)eiπγλ1d[(zαpx)2+(wβpy)2],
{z=xγ;w=yγ;{px=px/γ;py=py/γ.
r=1n1i=1n(Iv1(i)E(Iv1)σ(Iv1))(Iv2(i)E(Iv2)σ(Iv2)),
H=Re{BPδ{αRIR+αGIG+αBIB}},

Metrics