Abstract

We demonstrated on a synchronously pumped femtosecond optical parametric oscillator with dual-signal-wavelength operation. Our results showed that the dual-wavelength oscillation is not determined by the net-zero dispersion but rather by the balance of phase matching and group-velocity mismatching caused by the nonlinear crystal between the two signals. With a MgO-doped periodically poled lithium niobate as the nonlinear crystal, total signal power up to 530 mW was obtained by using a 2.6 W femtosecond Ti:sapphire laser at the central wavelength of 808 nm as the pump source, corresponding to a conversion efficiency of 20.4%. By slightly adjusting the cavity length, the signal wavelength can be broadly tuned from 1001 to 1438 nm and the dual-wavelength tuning range is from 1001 to 1204 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription