Abstract

This Letter reports on the fabrication of low-loss waveguides in gallium-lanthanum-sulfide chalcogenide glasses using an ultrafast laser. Spatial beam shaping and temporal pulse width tuning were used to optimize the guided mode profiles and optical loss of laser-written waveguides. Highly symmetric single-mode waveguides guiding at 1560 nm with a loss of 0.65dB/cm were fabricated using 1.5 ps laser pulses. This Letter suggests a pathway to produce high quality optical waveguides in substrates with strong nonlinearity using the ultrafast laser direct writing technique.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef]
  2. A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, Opt. Lett. 36, 3395 (2011).
    [CrossRef]
  3. M. Pelusi, V. Ta’Eed, L. Fu, and E. Magi, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008).
    [CrossRef]
  4. M. Galili, J. Xu, and H. Mulvad, Opt. Express 17, 2182 (2009).
    [CrossRef]
  5. N. Carlie, J. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, Opt. Express 18, 26728 (2010).
    [CrossRef]
  6. M. Hughes, W. Yang, and D. Hewak, Appl. Phys. Lett. 90, 131113 (2007).
    [CrossRef]
  7. A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).
  8. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, J. Opt. Soc. Am. B 20, 1559 (2003).
    [CrossRef]
  9. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  10. R. Curry, S. Birtwell, A. Mairaj, and X. Feng, J. Non-Cryst. Solids 351, 477 (2005).
    [CrossRef]
  11. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004), p. 94.
  12. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
    [CrossRef]
  13. E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, in Proceedings of 2010 12th International Conference on Transport Optical Networks (ICTON) (IEEE, 2010), paper We.B.42.
  14. G. Lucovsky, J. P. de Neufville, and F. L. Galeener, Phys. Rev. B. 9, 1591 (1974).
    [CrossRef]

2011

2010

2009

M. Galili, J. Xu, and H. Mulvad, Opt. Express 17, 2182 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

2008

M. Pelusi, V. Ta’Eed, L. Fu, and E. Magi, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008).
[CrossRef]

2007

M. Hughes, W. Yang, and D. Hewak, Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

2005

R. Curry, S. Birtwell, A. Mairaj, and X. Feng, J. Non-Cryst. Solids 351, 477 (2005).
[CrossRef]

2003

2000

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1996

1974

G. Lucovsky, J. P. de Neufville, and F. L. Galeener, Phys. Rev. B. 9, 1591 (1974).
[CrossRef]

Agarwal, A.

Andrianov, A.

E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, in Proceedings of 2010 12th International Conference on Transport Optical Networks (ICTON) (IEEE, 2010), paper We.B.42.

Arezki, B.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Benayas, A.

Birtwell, S.

R. Curry, S. Birtwell, A. Mairaj, and X. Feng, J. Non-Cryst. Solids 351, 477 (2005).
[CrossRef]

Canciamilla, A.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Carlie, N.

Cerullo, G.

Curry, R.

R. Curry, S. Birtwell, A. Mairaj, and X. Feng, J. Non-Cryst. Solids 351, 477 (2005).
[CrossRef]

Davis, K. M.

de Neufville, J. P.

G. Lucovsky, J. P. de Neufville, and F. L. Galeener, Phys. Rev. B. 9, 1591 (1974).
[CrossRef]

De Silvestri, S.

Feng, X.

R. Curry, S. Birtwell, A. Mairaj, and X. Feng, J. Non-Cryst. Solids 351, 477 (2005).
[CrossRef]

Fu, L.

M. Pelusi, V. Ta’Eed, L. Fu, and E. Magi, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008).
[CrossRef]

Galeener, F. L.

G. Lucovsky, J. P. de Neufville, and F. L. Galeener, Phys. Rev. B. 9, 1591 (1974).
[CrossRef]

Galili, M.

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Hirao, K.

Hu, J.

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Jaque, D.

A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, Opt. Lett. 36, 3395 (2011).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Jha, A.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Jose, G.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Kar, A. K.

A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, Opt. Lett. 36, 3395 (2011).
[CrossRef]

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Kern, P.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Kimerling, L.

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004), p. 94.

Konyukhov, A.

E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, in Proceedings of 2010 12th International Conference on Transport Optical Networks (ICTON) (IEEE, 2010), paper We.B.42.

Labadie, L.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Laporta, P.

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Lucovsky, G.

G. Lucovsky, J. P. de Neufville, and F. L. Galeener, Phys. Rev. B. 9, 1591 (1974).
[CrossRef]

Luzinov, I.

Macdonald, J. R.

Magi, E.

M. Pelusi, V. Ta’Eed, L. Fu, and E. Magi, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008).
[CrossRef]

Mairaj, A.

R. Curry, S. Birtwell, A. Mairaj, and X. Feng, J. Non-Cryst. Solids 351, 477 (2005).
[CrossRef]

Marangoni, M.

Martin, G.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Melloni, A.

Miura, K.

Morichetti, F.

Mulvad, H.

Muraviov, S.

E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, in Proceedings of 2010 12th International Conference on Transport Optical Networks (ICTON) (IEEE, 2010), paper We.B.42.

Musgraves, J.

Osellame, R.

Pelusi, M.

M. Pelusi, V. Ta’Eed, L. Fu, and E. Magi, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008).
[CrossRef]

Polli, D.

Psaila, N. D.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Ramponi, R.

Reed, G. T.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004), p. 94.

Richardson, K.

Rodenas, A.

A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, Opt. Lett. 36, 3395 (2011).
[CrossRef]

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Romanova, E.

E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, in Proceedings of 2010 12th International Conference on Transport Optical Networks (ICTON) (IEEE, 2010), paper We.B.42.

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Singh, V.

Sugimoto, N.

Ta’Eed, V.

M. Pelusi, V. Ta’Eed, L. Fu, and E. Magi, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008).
[CrossRef]

Taccheo, S.

Tang, D. Y.

Thomson, R. R.

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Xu, J.

Yang, W.

M. Hughes, W. Yang, and D. Hewak, Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Zdyrko, B.

Zhang, J.

Appl. Phys. B

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Appl. Phys. Lett.

M. Hughes, W. Yang, and D. Hewak, Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Pelusi, V. Ta’Eed, L. Fu, and E. Magi, IEEE J. Sel. Top. Quantum Electron. 14, 529 (2008).
[CrossRef]

J. Non-Cryst. Solids

R. Curry, S. Birtwell, A. Mairaj, and X. Feng, J. Non-Cryst. Solids 351, 477 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. B.

G. Lucovsky, J. P. de Neufville, and F. L. Galeener, Phys. Rev. B. 9, 1591 (1974).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other

A. Rodenas, G. Martin, B. Arezki, N. D. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” ArXiv: 1112.2546 (2011).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004), p. 94.

E. Romanova, A. Konyukhov, S. Muraviov, and A. Andrianov, in Proceedings of 2010 12th International Conference on Transport Optical Networks (ICTON) (IEEE, 2010), paper We.B.42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Guided mode analysis for pulse width dependence in the waveguide writing process for features written at 2 ps and 240 fs, respectively.

Fig. 2.
Fig. 2.

End facet view of laser written waveguides in GLS CHG glass using the astigmatic beam shaping technique. A, 2.75 ps; B, 2.1 ps; C, 1.5 ps; D, 1 ps; E, 500 fs. Minimum MFD was 11.3 μm at 1.5 ps. Features written at 4.5 and 3.75 ps only guided at 635 nm and were not visible under a standard white-light microscope.

Fig. 3.
Fig. 3.

Fringe pattern for the lowest loss feature written at 1.5 ps, with a loss of 0.65dB/cm (inset) and MFD and loss versus pulse width, showing optimal writing conditions.

Fig. 4.
Fig. 4.

Confocal Raman intensity images of three characteristic waveguides written with pulse widths of 1, 1.5 and 2.1 ps. Scale bar is 3 μm in the three images.

Metrics