Abstract

The superiority of parabolic-index fibers over step-index fibers in delivering high-beam-quality light out of incoherently combined lasers is demonstrated numerically and experimentally. By utilizing the tapered fused bundle-combining approach and connecting it with delivery fiber, we point to an efficient, rugged, all-glass, integrated, and nearly brightness-preserving device that is capable of transmitting high-quality output beams.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 272669 (2010).
    [CrossRef]
  2. Y. Shamir, Y. Sintov, and M. Shtaif, Opt. Lett. 36, 2874 (2011).
    [CrossRef]
  3. Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 78501R (2010).
    [CrossRef]
  4. A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
    [CrossRef]
  5. J. K. Kim, C. Hagemann, T. Schreiber, T. Peschel, S. Bohme, R. Eberhardt, and A. Tunnermann, Opt. Express 18, 13194 (2010).
    [CrossRef]
  6. D. Marcuse, Light Transmission Optics (Van-Nostrand, 1982).
  7. R. Zuitlin, Y. Shamir, Y. Sintov, and M. Shtaif, “Analytical model of spatial beam parameters’ evolution in parabolic index fiber,” submitted to Opt. Lett.

2011 (1)

2010 (3)

2007 (1)

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Bohme, S.

Eberhardt, R.

Faucher, M.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Hagemann, C.

Kim, J. K.

Lize, Y.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Lovelady, M.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van-Nostrand, 1982).

Peschel, T.

Saguin, F.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Schreiber, T.

Shamir, Y.

Y. Shamir, Y. Sintov, and M. Shtaif, Opt. Lett. 36, 2874 (2011).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 272669 (2010).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 78501R (2010).
[CrossRef]

R. Zuitlin, Y. Shamir, Y. Sintov, and M. Shtaif, “Analytical model of spatial beam parameters’ evolution in parabolic index fiber,” submitted to Opt. Lett.

Shtaif, M.

Y. Shamir, Y. Sintov, and M. Shtaif, Opt. Lett. 36, 2874 (2011).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 272669 (2010).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 78501R (2010).
[CrossRef]

R. Zuitlin, Y. Shamir, Y. Sintov, and M. Shtaif, “Analytical model of spatial beam parameters’ evolution in parabolic index fiber,” submitted to Opt. Lett.

Sintov, Y.

Y. Shamir, Y. Sintov, and M. Shtaif, Opt. Lett. 36, 2874 (2011).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 272669 (2010).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 78501R (2010).
[CrossRef]

R. Zuitlin, Y. Shamir, Y. Sintov, and M. Shtaif, “Analytical model of spatial beam parameters’ evolution in parabolic index fiber,” submitted to Opt. Lett.

Tunnermann, A.

Wetter, A.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Zuitlin, R.

R. Zuitlin, Y. Shamir, Y. Sintov, and M. Shtaif, “Analytical model of spatial beam parameters’ evolution in parabolic index fiber,” submitted to Opt. Lett.

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 78501R (2010).
[CrossRef]

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Other (2)

D. Marcuse, Light Transmission Optics (Van-Nostrand, 1982).

R. Zuitlin, Y. Shamir, Y. Sintov, and M. Shtaif, “Analytical model of spatial beam parameters’ evolution in parabolic index fiber,” submitted to Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Two types of beam-delivery fibers for combined signal guiding are considered in this work: a step-index and a parabolic-index delivery fiber, illustrated schemetically. Indices are shown graphically versus core radius.

Fig. 2.
Fig. 2.

BPM simulation for generating the TFB output field: (a) side view of a TFB combiner and the local intensities shown by slices. (b): x-y section of the simulation intensity at the TFB combiner’s tip, with a nearly equal power split ratio. White peripheral line describes the TFB end facet.

Fig. 3.
Fig. 3.

Simulation of M2 evolution throughout the three delivery fibers, injected with the TFB output field. Dashed grey: step 105μm/125μm/0.22NA; dashed black: step 100μm/140μm/0.12NA; solid black: parabolic index fiber, 100μm/140μm/0.29NA. At z=0, the M2 value is of the combiners’ output facet. The solid black line oscillates rapidly in the scale of the figure.

Fig. 4.
Fig. 4.

Powers in the three-fiber coupler during fabrication. Dark: the injected fiber, ranging (theoretically) from 100% to 11%. Light and dark grey: the two unexcited fibers, ranging (theoretically) from 0% to 44%, constituting complementary power cycles. Insertion loss was 0.17 dB. PL: pulling length.

Fig. 5.
Fig. 5.

End-face views of the TFB tip. (a) The characteristic radius. (b) Exciting one fiber with a 1064 nm source.

Fig. 6.
Fig. 6.

Near- and far-field intensity images of (a): step 105μm/125μm/0.22NA. (b): step 100μm/140μm/0.12NA. (c): GRIN 100μm/140μm/0.29NA delivery fibers, following the injection of three equally powered single-mode fiber lasers into the TFB combiner. The power level was 3×100mW.

Fig. 7.
Fig. 7.

The combiner’s end and waist (right) splice connection into the delivery fiber (left). Splice was performed using an arc fusion machine and a precise translator. Note the gradual wall-fusion radius, contributing to the structure’s strength.

Fig. 8.
Fig. 8.

M2 measurement and NF intensity at the combiner’s output. The red and blue lines correspond to the x and y directions. (a) The result directly at the output facet of the TFB combiner’s tip, giving M2=3.05. (b) Result at the end facet of the GRIN delivery fiber, giving M2=3.21. Horizontal axis is the z-optical direction. Vertical axis is the waist diameter, accounted by the 4σ measurements. The power was 15(3×5)W.

Tables (1)

Tables Icon

Table 1. Pre-Splice Results of the Delivery Fibers, Injected by a Three-Fiber TBD Combiner

Metrics