Abstract

In this paper we present an interferometer based on photonic crystal fiber (PCF) tip ended with a solid silica-sphere for refractive index sensing. The sensor is fabricated by splicing one end of the holey PCF to a single mode fiber (SMF) and applying arc at the other end to form a solid sphere. The sensor has been experimentally tested for refractive index and temperature sensing by monitoring its wavelength shift. Measurement results show that the sensor has the resolution of the order of 8.7×104 over the refractive index range of 1.33–1.40, and temperature sensitivity of the order of 10pm/°C in the range of 20–100 °C.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
    [CrossRef]
  2. J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, J. Sens. 2009, 747803 (2009).
    [CrossRef]
  3. J. Kou, J. Feng, L. Ye, F. Xu, and Y. Lu, Opt. Express 18, 14245 (2010).
    [CrossRef]
  4. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
    [CrossRef]
  5. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, J. Lightwave Technol. 27, 3933 (2009).
    [CrossRef]
  6. J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, Electron. Lett. 46, 1341 (2010).
    [CrossRef]
  7. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).
  8. N.-K. Chen, K.-Y. Lu, J.-T. Shy, and C. Lin, Opt. Lett. 36, 2074 (2011).
  9. W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, Opt. Lett. 36, 1731 (2011).

2011 (2)

2010 (2)

J. Kou, J. Feng, L. Ye, F. Xu, and Y. Lu, Opt. Express 18, 14245 (2010).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, Electron. Lett. 46, 1341 (2010).
[CrossRef]

2009 (3)

2007 (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

2005 (1)

N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Badenes, G.

J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, J. Sens. 2009, 747803 (2009).
[CrossRef]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Bock, W. J.

Chan, C. C.

Chen, J.

Chen, L. H.

Chen, N.-K.

Chryssis, N.

N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Dagenais, M.

N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Eftimov, T. A.

Farrell, G.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, Electron. Lett. 46, 1341 (2010).
[CrossRef]

Feng, J.

Finazzi, V.

J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, J. Sens. 2009, 747803 (2009).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Jha, R.

Kou, J.

Lee, S. B.

N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Lee, S. M.

N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Leong, K. C.

Lin, C.

Lu, K.-Y.

Lu, Y.

Mathew, J.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, Electron. Lett. 46, 1341 (2010).
[CrossRef]

Mikulic, P.

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Pruneri, V.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).

J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, J. Sens. 2009, 747803 (2009).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Rajan, G.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, Electron. Lett. 46, 1341 (2010).
[CrossRef]

Saini, S. S.

N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Semenova, Y.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, Electron. Lett. 46, 1341 (2010).
[CrossRef]

Shy, J.-T.

Tou, Z. Q.

Villatoro, J.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).

J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, J. Sens. 2009, 747803 (2009).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Wong, W. C.

Xu, F.

Ye, L.

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Electron. Lett. (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, Electron. Lett. 46, 1341 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Sens. (1)

J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, J. Sens. 2009, 747803 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scanning electron microscope (SEM) picture of the employed PCF cross section.

Fig. 2.
Fig. 2.

(a) Microscopic picture of the fabricated sensor head. (b) Close-up of an air bubble.

Fig. 3.
Fig. 3.

(a) Overall spectrum of the sensor. (b) Sensor spectrum in chosen wavelength range.

Fig. 4.
Fig. 4.

Multiple reflection model of the air bubble.

Fig. 5.
Fig. 5.

(a) Calculated interference spectrum of the air bubble. (b) Measured spectrum in glycerin.

Fig. 6.
Fig. 6.

Experimental setup consists of an ASE light source, optical spectrum analyzer (OSA), and three-port circulator.

Fig. 7.
Fig. 7.

(a) Reflected power for different refractive indices in a wavelength function. (b) Deep position as a function of the refractive index of the surrounding medium.

Fig. 8.
Fig. 8.

Fringe visibility of the sensor.

Fig. 9.
Fig. 9.

(a) Reflected power for different temperature in a wavelength function. (b) Deep position in the function of temperature.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

FSR=λ2/2nz,
ER=E0[R1+(1α1)2(1R1)2R2ej2ϕ1]
Ri=(nini+1ni+ni+1)2,i=1,2
ϕi=2πniLiλi=1,
IR=|ERE0|2=R1+(1α1)2(1R1)2R2+(1α1)2(1α2)2(1R1)2(1R2)2+2(1α1)(1R1)R1R2cos(2ϕ1).
V=IRmaxIRminIRmax+IRmin,

Metrics