Abstract

We demonstrate an intrinsic biochemical concentration sensor based on a polymer optical fiber Bragg grating. The water content absorbed by the polymer fiber from a surrounding solution depends on the concentration of the solution because of the osmotic effect. The variation of water content in the fiber causes a change in the fiber dimensions and a variation in refractive index and, therefore, a shift in the Bragg wavelength. Saline solutions with concentration from 0% to 22% were used to demonstrate the sensing principle, resulting in a total wavelength shift of 0.9 nm, allowing high-resolution concentration measurements to be realized.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Willsch, W. Ecke, and H. Bartelt, Proc. SPIE 7753, 775302 (2011).
    [CrossRef]
  2. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007).
    [CrossRef]
  3. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999).
    [CrossRef]
  4. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, Opt. Lett. 30, 3296 (2005).
    [CrossRef]
  5. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, 2008).
  6. J. A. Barrie and B. Platt, Polymer 4, 303 (1963).
    [CrossRef]
  7. C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010).
    [CrossRef]
  8. A. M. Thomas, J. Appl. Chem. 1, 141 (1951).
    [CrossRef]
  9. J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon, 1975).
  10. J. H. van’t Hoff, “Osmotic pressure and chemical equilibrium,” Nobel Prize lecture, 13Dec1901, http://nobelprize.org/nobel_prizes/chemistry/laureates/1901/hoff-lecture.pdf .
  11. P. C. Hiemenz and T. P. Lodge, Polymer Chemistry: The Basic Concepts, 2nd ed. (CRC Press, 2007).
  12. W. Zhang, D. J. Webb, and G.-D. Peng, Proc. SPIE 7753, 77533M (2011).
    [CrossRef]
  13. J. Comyn, Polymer Permeability (Elsevier, 1985).
  14. F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
    [CrossRef]

2011

R. Willsch, W. Ecke, and H. Bartelt, Proc. SPIE 7753, 775302 (2011).
[CrossRef]

W. Zhang, D. J. Webb, and G.-D. Peng, Proc. SPIE 7753, 77533M (2011).
[CrossRef]

2010

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010).
[CrossRef]

2007

F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
[CrossRef]

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007).
[CrossRef]

2005

1999

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999).
[CrossRef]

1963

J. A. Barrie and B. Platt, Polymer 4, 303 (1963).
[CrossRef]

1951

A. M. Thomas, J. Appl. Chem. 1, 141 (1951).
[CrossRef]

Argyros, A.

F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, Opt. Lett. 30, 3296 (2005).
[CrossRef]

Barrie, J. A.

J. A. Barrie and B. Platt, Polymer 4, 303 (1963).
[CrossRef]

Bartelt, H.

R. Willsch, W. Ecke, and H. Bartelt, Proc. SPIE 7753, 775302 (2011).
[CrossRef]

Bosch, M. E.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007).
[CrossRef]

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999).
[CrossRef]

Comyn, J.

J. Comyn, Polymer Permeability (Elsevier, 1985).

Cordeiro, C. M. B.

F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
[CrossRef]

Cox, F. M.

F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
[CrossRef]

Crank, J.

J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon, 1975).

Dobb, H.

Ecke, W.

R. Willsch, W. Ecke, and H. Bartelt, Proc. SPIE 7753, 775302 (2011).
[CrossRef]

Harbach, N. G.

N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, 2008).

Hiemenz, P. C.

P. C. Hiemenz and T. P. Lodge, Polymer Chemistry: The Basic Concepts, 2nd ed. (CRC Press, 2007).

Kalli, K.

Large, M. C. J.

F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, Opt. Lett. 30, 3296 (2005).
[CrossRef]

Lodge, T. P.

P. C. Hiemenz and T. P. Lodge, Polymer Chemistry: The Basic Concepts, 2nd ed. (CRC Press, 2007).

Lwin, R.

F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
[CrossRef]

Ojeda, C. B.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007).
[CrossRef]

Peng, G. D.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999).
[CrossRef]

Peng, G.-D.

W. Zhang, D. J. Webb, and G.-D. Peng, Proc. SPIE 7753, 77533M (2011).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010).
[CrossRef]

Platt, B.

J. A. Barrie and B. Platt, Polymer 4, 303 (1963).
[CrossRef]

Rojas, F. S.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007).
[CrossRef]

Sánchez, A. J. R.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007).
[CrossRef]

Thomas, A. M.

A. M. Thomas, J. Appl. Chem. 1, 141 (1951).
[CrossRef]

van Eijkelenborg, M. A.

Webb, D. J.

W. Zhang, D. J. Webb, and G.-D. Peng, Proc. SPIE 7753, 77533M (2011).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, Opt. Lett. 30, 3296 (2005).
[CrossRef]

Willsch, R.

R. Willsch, W. Ecke, and H. Bartelt, Proc. SPIE 7753, 775302 (2011).
[CrossRef]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999).
[CrossRef]

Zhang, C.

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010).
[CrossRef]

Zhang, W.

W. Zhang, D. J. Webb, and G.-D. Peng, Proc. SPIE 7753, 77533M (2011).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010).
[CrossRef]

Electron. Lett.

C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999).
[CrossRef]

J. Appl. Chem.

A. M. Thomas, J. Appl. Chem. 1, 141 (1951).
[CrossRef]

Opt. Lett.

Polymer

J. A. Barrie and B. Platt, Polymer 4, 303 (1963).
[CrossRef]

Proc. SPIE

W. Zhang, D. J. Webb, and G.-D. Peng, Proc. SPIE 7753, 77533M (2011).
[CrossRef]

F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007).
[CrossRef]

R. Willsch, W. Ecke, and H. Bartelt, Proc. SPIE 7753, 775302 (2011).
[CrossRef]

Sensors

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007).
[CrossRef]

Other

J. Comyn, Polymer Permeability (Elsevier, 1985).

N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, 2008).

J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon, 1975).

J. H. van’t Hoff, “Osmotic pressure and chemical equilibrium,” Nobel Prize lecture, 13Dec1901, http://nobelprize.org/nobel_prizes/chemistry/laureates/1901/hoff-lecture.pdf .

P. C. Hiemenz and T. P. Lodge, Polymer Chemistry: The Basic Concepts, 2nd ed. (CRC Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental arrangement.

Fig. 2.
Fig. 2.

Measured sensor response against step change of saline concentration.

Fig. 3.
Fig. 3.

Wavelength change of POFBG versus concentration. Inset: Wavelength deviation for concentration measurement.

Fig. 4.
Fig. 4.

More detailed sensor response against step change of saline concentration.

Fig. 5.
Fig. 5.

Sensor responses reflecting response time.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λB=λB,0+αW,
Posm=cRT,
Q=(ΔPPosm)KwS/d,

Metrics