Abstract

Real-time and single-shot ultra-fast photonic time-intensity integration of arbitrary temporal waveforms is proposed and demonstrated. The intensity-integration concept is based on a time-spectrum convolution system, where the use of a multi-wavelength laser with a flat envelope, employed as the incoherent broadband source, enables single-shot operation. The experimental implementation is based on optical intensity modulation of the multi-wavelength laser with the input waveform, followed by linear dispersion. In particular, photonic temporal intensity integration with a processing bandwidth of 36.8 GHz over an integration time window of 1.24 ns is verified by experimentally measuring the integration of an ultra-short microwave pulse and an arbitrary microwave waveform.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).
  2. C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
    [CrossRef]
  3. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. Ahn, S. LaRochelle, and J. Azaña, Opt. Express 16, 18202 (2008).
    [CrossRef]
  4. Y. Park, T. Ahn, Y. Dai, J. Yao, and J. Azaña, Opt. Express 16, 17817 (2008).
    [CrossRef]
  5. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
    [CrossRef]
  6. N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
    [CrossRef]
  7. Y. Park and J. Azaña, Opt. Lett. 34, 1156 (2009).
    [CrossRef]
  8. M. Asghari, Y. Park, and J. Azaña, Opt. Lett. 36, 3557 (2011).
    [CrossRef]
  9. Y. Park and J. Azaña, Opt. Lett. 35, 796 (2010).
    [CrossRef]
  10. X. Yi and R. A. Minasian, J. Lightwave Technol. 24, 4959 (2006).
    [CrossRef]
  11. V. Torres-Company and L. Chen, Opt. Express 17, 22553 (2009).
    [CrossRef]
  12. Y. Kim, S. Doucet, and S. LaRochelle, IEEE Photon. Technol. Lett. 20, 1718 (2008).
    [CrossRef]

2011 (1)

2010 (2)

Y. Park and J. Azaña, Opt. Lett. 35, 796 (2010).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

2009 (2)

2008 (3)

2006 (2)

X. Yi and R. A. Minasian, J. Lightwave Technol. 24, 4959 (2006).
[CrossRef]

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

1995 (1)

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Ahn, T.

Asghari, M.

Ayotte, N.

Azaña, J.

Binh, L. N.

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Chen, L.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

Dai, Y.

Doucet, S.

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

Hsue, C.-W.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

Kim, Y.

Y. Kim, S. Doucet, and S. LaRochelle, IEEE Photon. Technol. Lett. 20, 1718 (2008).
[CrossRef]

LaRochelle, S.

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

Minasian, R. A.

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

Nawab, S. H.

V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Nawab, S. N.

V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Ngo, N. Q.

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Oppenheim, V.

V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Park, Y.

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

Slavík, R.

Torres-Company, V.

Tsai, L.-C.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

Tsai, Y.-H.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

Willsky, A. S.

V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Yao, J.

Yi, X.

IEEE Photon. Technol. Lett. (1)

Y. Kim, S. Doucet, and S. LaRochelle, IEEE Photon. Technol. Lett. 20, 1718 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microwave Theory Tech. 54, 1043 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Commun. (1)

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 1, 29 (2010).
[CrossRef]

Opt. Commun. (1)

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (1)

V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the photonic intensity integration process. (b) Experimental setup for the proof-of-concept demonstration of the proposed method.

Fig. 2.
Fig. 2.

Comb laser spectrum after equalization (a) and corresponding experimentally measured temporal impulse response, averaged 50 times. (b) Input comb laser spectrum (c) and corresponding experimentally measured temporal impulse response (without equalization), in sampling mode (no averaging). (d) Zoom of figure (d) except the black curve (e).

Fig. 3.
Fig. 3.

(a) Real-time oscilloscope trace of the impulse response without equalization and with no averaging (i.e., single-shot). Sampling oscilloscope traces (with no average) of the impulse response without equalization (b) and with equalization (c).

Fig. 4.
Fig. 4.

Measured (no averaging) photonic intensity integration in sampling mode (b) of an input arbitrary microwave signal (a) with equalization filtering.

Metrics