Abstract

We theoretically describe ultrashort self-similar pulses propagating in coherent linear absorbers near optical resonance and propose a method for their experimental realization.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1985).
  2. F. Gori, Opt. Commun. 34, 301 (1980).
    [CrossRef]
  3. J. Lancis, V. Torres-Company, E. Silvestre, and P. Andrés, Opt. Lett. 30, 2973 (2005).
    [CrossRef]
  4. M. D. Crisp, Phys. Rev. A 6, 2001 (1972).
    [CrossRef]
  5. S. Haghgoo and S. A. Ponomarenko, Opt. Express 19, 9750 (2011).
    [CrossRef]
  6. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  7. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).
  8. M. Abramowitz and I. A. Stegan, Handbook of Mathematical Functions (Dover, 1972).
  9. C. Froehly, B. Colombeau, and M. Vampouille, in Progress in Optics, E. Wolf, ed. (1981), Vol. 20, pp. 115–135.

2011 (1)

2006 (1)

2005 (1)

1980 (1)

F. Gori, Opt. Commun. 34, 301 (1980).
[CrossRef]

1972 (1)

M. D. Crisp, Phys. Rev. A 6, 2001 (1972).
[CrossRef]

Abramowitz, M.

M. Abramowitz and I. A. Stegan, Handbook of Mathematical Functions (Dover, 1972).

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).

Andrés, P.

Colombeau, B.

C. Froehly, B. Colombeau, and M. Vampouille, in Progress in Optics, E. Wolf, ed. (1981), Vol. 20, pp. 115–135.

Crisp, M. D.

M. D. Crisp, Phys. Rev. A 6, 2001 (1972).
[CrossRef]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1985).

Froehly, C.

C. Froehly, B. Colombeau, and M. Vampouille, in Progress in Optics, E. Wolf, ed. (1981), Vol. 20, pp. 115–135.

Gori, F.

F. Gori, Opt. Commun. 34, 301 (1980).
[CrossRef]

Haghgoo, S.

Lancis, J.

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1985).

Ponomarenko, S. A.

Russell, P. St. J.

Silvestre, E.

Stegan, I. A.

M. Abramowitz and I. A. Stegan, Handbook of Mathematical Functions (Dover, 1972).

Torres-Company, V.

Vampouille, M.

C. Froehly, B. Colombeau, and M. Vampouille, in Progress in Optics, E. Wolf, ed. (1981), Vol. 20, pp. 115–135.

J. Lightwave Technol. (1)

Opt. Commun. (1)

F. Gori, Opt. Commun. 34, 301 (1980).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

M. D. Crisp, Phys. Rev. A 6, 2001 (1972).
[CrossRef]

Other (4)

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1985).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).

M. Abramowitz and I. A. Stegan, Handbook of Mathematical Functions (Dover, 1972).

C. Froehly, B. Colombeau, and M. Vampouille, in Progress in Optics, E. Wolf, ed. (1981), Vol. 20, pp. 115–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Root-mean-square width of the zero-index pulse as a function of Z for three values of Z0.

Fig. 2.
Fig. 2.

Pulse spectrum of the zero-index mode (in arbitrary units) as a function of dimensionless frequency ω and propagation distance Z for (a) Z0=0.5 and (b) Z0=7. Insets: zero-index pulse intensity profile as a function of dimensionless time T; Z=70, (dotted curve) and Z=100 (solid curve).

Fig. 3.
Fig. 3.

Left: the filter phase (solid) and the real part of the refractive index (dashed). Right: the filter amplitude (solid) and the imaginary part of the refractive index (dashed).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ζΩ=iκσ,
τσ=γσ+iΩ,
E(τ,ζ)=dνE˜0(ν)eiντexp[αζ2(1iνT)].
E˜0(ν)=dt2πE(t,0)eiνt.
Es(t,0)=E0sθ(t)(κζ0t)s/2Js(2κζ0t)eγt,
0dxxs+1ea2x2Js(bx)=bs(2a2)s+1eb2/4a2,
E˜0s(ν)=E˜ms(1iνT)s+1exp[αζ02(iνT1iνT)].
E˜ms=E0sT2π(αζ02)seαζ0/2,
Es(t,0)=dνE˜s0(ν)eiνt,
Es(τ,ζ)=E0sθ(τ)(1+ζ/ζ0)sηs/2Js(2η)eγτ.
Ss(ω,Z)=S0(1+ω2)s+1exp(Z+Z01+ω2).

Metrics