Abstract

Three-dimensional profiling by sinusoidal fringe projection using PSI-algorithms are distorted by the nonlinear response of digital cameras and commercial video projectors. To solve the problem, we present a fringe generation technique that consists of projecting and acquiring a temporal sequence of strictly binary color patterns, whose (adequately weighted) average leads to sinusoidal fringe patterns with the required number of bits, which allows for a reliable three-dimensional profile using a PSI-algorithm. Validation experiments are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, Opt. Lasers Eng. 48, 149 (2010).
    [CrossRef]
  2. P. S. Huang, C. Zhang, and F.-P. Chiang, Opt. Eng. 42, 163 (2003).
    [CrossRef]
  3. S. Zhang and P. S. Huang, Opt. Eng. 46, 063601 (2007).
    [CrossRef]
  4. S. Zhang and S.-T. Yau, Appl. Opt. 46, 36 (2007).
    [CrossRef]
  5. H. Guo, H. He, and M. Chen, Appl. Opt. 43, 2906 (2004).
    [CrossRef]
  6. B. Pan, Q. Kemao, L. Huang, and A. Asundi, Opt. Lett. 34, 416 (2009).
    [CrossRef]
  7. T. Hoang, B. Pan, D. Nguyen, and Z. Wang, Opt. Lett. 35, 1992 (2010).
    [CrossRef]
  8. S. Lei and S. Zhang, Opt. Lett. 34, 3080 (2009).
    [CrossRef]
  9. G. A. Ayubi, J. A. Ayubi, J. M. Di Martino, and J. A. Ferrari, Opt. Lett. 35, 3682 (2010).
    [CrossRef]
  10. S. Zhang, Appl. Opt. 50, 1753 (2011).
    [CrossRef]
  11. L. Ekstrand and S. Zhang, Opt. Lett. 36, 4518 (2011).
    [CrossRef]
  12. G. A. Ayubi, J. M. Di Martino, J. R. Alonso, A. Fernández, C. D. Perciante, and J. A. Ferrari, Appl. Opt. 50, 147 (2011).
    [CrossRef]
  13. Z. Zhang, C. E. Towers, and D. P. Towers, Opt. Express 14, 6444 (2006).
    [CrossRef]
  14. J. Pan, P. S. Huang, and F.-P. Chiang, Opt. Eng. 45, 013602 (2006).
    [CrossRef]
  15. M. Rabbani and P. W. Jones, Digital Image Compression Technique (SPIE, 1991).

2011 (3)

2010 (3)

2009 (2)

2007 (2)

S. Zhang and S.-T. Yau, Appl. Opt. 46, 36 (2007).
[CrossRef]

S. Zhang and P. S. Huang, Opt. Eng. 46, 063601 (2007).
[CrossRef]

2006 (2)

J. Pan, P. S. Huang, and F.-P. Chiang, Opt. Eng. 45, 013602 (2006).
[CrossRef]

Z. Zhang, C. E. Towers, and D. P. Towers, Opt. Express 14, 6444 (2006).
[CrossRef]

2004 (1)

2003 (1)

P. S. Huang, C. Zhang, and F.-P. Chiang, Opt. Eng. 42, 163 (2003).
[CrossRef]

Alonso, J. R.

Asundi, A.

Ayubi, G. A.

Ayubi, J. A.

Chen, M.

Chiang, F.-P.

J. Pan, P. S. Huang, and F.-P. Chiang, Opt. Eng. 45, 013602 (2006).
[CrossRef]

P. S. Huang, C. Zhang, and F.-P. Chiang, Opt. Eng. 42, 163 (2003).
[CrossRef]

Di Martino, J. M.

Ekstrand, L.

Fernández, A.

Ferrari, J. A.

Guo, H.

He, H.

Hoang, T.

Huang, L.

Huang, P. S.

S. Zhang and P. S. Huang, Opt. Eng. 46, 063601 (2007).
[CrossRef]

J. Pan, P. S. Huang, and F.-P. Chiang, Opt. Eng. 45, 013602 (2006).
[CrossRef]

P. S. Huang, C. Zhang, and F.-P. Chiang, Opt. Eng. 42, 163 (2003).
[CrossRef]

Jones, P. W.

M. Rabbani and P. W. Jones, Digital Image Compression Technique (SPIE, 1991).

Kemao, Q.

Lei, S.

Nguyen, D.

Pan, B.

Pan, J.

J. Pan, P. S. Huang, and F.-P. Chiang, Opt. Eng. 45, 013602 (2006).
[CrossRef]

Perciante, C. D.

Rabbani, M.

M. Rabbani and P. W. Jones, Digital Image Compression Technique (SPIE, 1991).

Towers, C. E.

Towers, D. P.

Wang, Z.

Yau, S.-T.

Zhang, C.

P. S. Huang, C. Zhang, and F.-P. Chiang, Opt. Eng. 42, 163 (2003).
[CrossRef]

Zhang, S.

Zhang, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Gray-level “sinusoidal” pattern; (b) horizontal intensity cut; (c) FFT showing the fundamental frequency f0 and higher frequency components.

Fig. 2.
Fig. 2.

(a)–(d) 8-bit color encoded binary (gray) images representing a sinusoidal pattern; their RB-components correspond to the bits i=1,2,8. (e) Shifted M1 pattern.

Fig. 3.
Fig. 3.

(a) Reconstructed sinusoidal pattern; (b) horizontal intensity cut; (c) FFT showing the fundamental frequency f0.

Fig. 4.
Fig. 4.

(a)–(e) Deformed patterns acquired by the camera when the patterns shown in Figs. 2(a)2(e) are projected on a test plaster mask.

Fig. 5.
Fig. 5.

(a) Reconstructed three-dimensional shape profile using the proposed method and (b) the surface profile with spurious periodic undulation due to the gamma problem.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=(255/2)[1+cos(2πf0x)],
x=cos(θ)x+sin(θ)z(x,y);y=y,
Iπ/2(x,y)=(255/2)[1±1(2I(x,y)/2551)2],
z(x,y)=(12πf0sin(θ))arctan[2552Iπ/2(x,y)2I(x,y)255]xtan(θ).
I(x,y)=i=182(8i)Mi(x,y).
M1(x+π/2,y)={1whensin(2πf0x)>00whensin(2πf0x)<0,

Metrics