Abstract

A recently developed nonlinear optical pump-probe microscopy technique uses modulation transfer to sensitively extract excited-state dynamics of endogenous biological pigments, such as eumelanin and pheomelanin. In this work, we use this method to image and characterize several inorganic and organic pigments used in historical art. We show substantial differences in the near-IR pump-probe signatures from nominally similar pigments and suggest extensions to art restoration.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Verma, in Atomic and Nuclear Analytical Methods (Springer, 2007), pp. 1–90.
  2. M. Bacci and M. Picollo, Stud. Conserv. 41, 136 (1996).
    [CrossRef]
  3. H. Liang, Appl. Phys. A 106, 309 (2012).
    [CrossRef]
  4. P. Targowski and M. Iwanicka, Appl. Phys. A 106, 265 (2012).
    [CrossRef]
  5. S. P. Best, R. J. H. Clark, and R. Withnall, Endeavour 16, 66 (1992).
    [CrossRef]
  6. G. Lorenzetti, J. Striova, A. Zoppi, and E. M. Castellucci, J. Mol. Struct. 993, 97 (2011).
    [CrossRef]
  7. G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, Opt. Lett. 33, 240 (2008).
    [CrossRef]
  8. S. Psilodimitrakopoulos, L. Serrado, I. Cormack, D. Artigas, and P. Loza-Alvarez, in Lasers in the Conservation of Artworks (CRC Press, 2008), pp. 15–22.
  9. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
    [CrossRef]
  10. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
    [CrossRef]
  11. D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
    [CrossRef]
  12. G. D. Smith and R. J. Klinshaw, J. Cult. Herit. 10, 415 (2009).
    [CrossRef]
  13. C. M. Schmidt, M. S. Walton, and K. Trentelman, Anal. Chem. 81, 8513 (2009).
    [CrossRef]

2012 (2)

H. Liang, Appl. Phys. A 106, 309 (2012).
[CrossRef]

P. Targowski and M. Iwanicka, Appl. Phys. A 106, 265 (2012).
[CrossRef]

2011 (2)

G. Lorenzetti, J. Striova, A. Zoppi, and E. M. Castellucci, J. Mol. Struct. 993, 97 (2011).
[CrossRef]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

2009 (2)

G. D. Smith and R. J. Klinshaw, J. Cult. Herit. 10, 415 (2009).
[CrossRef]

C. M. Schmidt, M. S. Walton, and K. Trentelman, Anal. Chem. 81, 8513 (2009).
[CrossRef]

2008 (2)

G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, Opt. Lett. 33, 240 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

2007 (1)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

1996 (1)

M. Bacci and M. Picollo, Stud. Conserv. 41, 136 (1996).
[CrossRef]

1992 (1)

S. P. Best, R. J. H. Clark, and R. Withnall, Endeavour 16, 66 (1992).
[CrossRef]

Artigas, D.

S. Psilodimitrakopoulos, L. Serrado, I. Cormack, D. Artigas, and P. Loza-Alvarez, in Lasers in the Conservation of Artworks (CRC Press, 2008), pp. 15–22.

Bacci, M.

M. Bacci and M. Picollo, Stud. Conserv. 41, 136 (1996).
[CrossRef]

Best, S. P.

S. P. Best, R. J. H. Clark, and R. Withnall, Endeavour 16, 66 (1992).
[CrossRef]

Castellucci, E. M.

G. Lorenzetti, J. Striova, A. Zoppi, and E. M. Castellucci, J. Mol. Struct. 993, 97 (2011).
[CrossRef]

Clark, R. J. H.

S. P. Best, R. J. H. Clark, and R. Withnall, Endeavour 16, 66 (1992).
[CrossRef]

Cormack, I.

S. Psilodimitrakopoulos, L. Serrado, I. Cormack, D. Artigas, and P. Loza-Alvarez, in Lasers in the Conservation of Artworks (CRC Press, 2008), pp. 15–22.

Filippidis, G.

Fotakis, C.

Fu, D.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

Grichnik, J.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

Gualda, E. J.

Hong, L.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

Iwanicka, M.

P. Targowski and M. Iwanicka, Appl. Phys. A 106, 265 (2012).
[CrossRef]

Klinshaw, R. J.

G. D. Smith and R. J. Klinshaw, J. Cult. Herit. 10, 415 (2009).
[CrossRef]

Liang, H.

H. Liang, Appl. Phys. A 106, 309 (2012).
[CrossRef]

Lorenzetti, G.

G. Lorenzetti, J. Striova, A. Zoppi, and E. M. Castellucci, J. Mol. Struct. 993, 97 (2011).
[CrossRef]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, L. Serrado, I. Cormack, D. Artigas, and P. Loza-Alvarez, in Lasers in the Conservation of Artworks (CRC Press, 2008), pp. 15–22.

Matthews, T. E.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

Melessanaki, K.

Picollo, M.

M. Bacci and M. Picollo, Stud. Conserv. 41, 136 (1996).
[CrossRef]

Piletic, I. R.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, L. Serrado, I. Cormack, D. Artigas, and P. Loza-Alvarez, in Lasers in the Conservation of Artworks (CRC Press, 2008), pp. 15–22.

Schmidt, C. M.

C. M. Schmidt, M. S. Walton, and K. Trentelman, Anal. Chem. 81, 8513 (2009).
[CrossRef]

Selim, M. A.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Serrado, L.

S. Psilodimitrakopoulos, L. Serrado, I. Cormack, D. Artigas, and P. Loza-Alvarez, in Lasers in the Conservation of Artworks (CRC Press, 2008), pp. 15–22.

Simon, J. D.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

Simpson, M. J.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Smith, G. D.

G. D. Smith and R. J. Klinshaw, J. Cult. Herit. 10, 415 (2009).
[CrossRef]

Striova, J.

G. Lorenzetti, J. Striova, A. Zoppi, and E. M. Castellucci, J. Mol. Struct. 993, 97 (2011).
[CrossRef]

Targowski, P.

P. Targowski and M. Iwanicka, Appl. Phys. A 106, 265 (2012).
[CrossRef]

Trentelman, K.

C. M. Schmidt, M. S. Walton, and K. Trentelman, Anal. Chem. 81, 8513 (2009).
[CrossRef]

Verma, H. R.

H. R. Verma, in Atomic and Nuclear Analytical Methods (Springer, 2007), pp. 1–90.

Walton, M. S.

C. M. Schmidt, M. S. Walton, and K. Trentelman, Anal. Chem. 81, 8513 (2009).
[CrossRef]

Warren, W. S.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

Withnall, R.

S. P. Best, R. J. H. Clark, and R. Withnall, Endeavour 16, 66 (1992).
[CrossRef]

Ye, T.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

Zoppi, A.

G. Lorenzetti, J. Striova, A. Zoppi, and E. M. Castellucci, J. Mol. Struct. 993, 97 (2011).
[CrossRef]

Anal. Chem. (1)

C. M. Schmidt, M. S. Walton, and K. Trentelman, Anal. Chem. 81, 8513 (2009).
[CrossRef]

Appl. Phys. A (2)

H. Liang, Appl. Phys. A 106, 309 (2012).
[CrossRef]

P. Targowski and M. Iwanicka, Appl. Phys. A 106, 265 (2012).
[CrossRef]

Endeavour (1)

S. P. Best, R. J. H. Clark, and R. Withnall, Endeavour 16, 66 (1992).
[CrossRef]

J. Biomed. Opt. (2)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, J. Biomed. Opt. 12, 054004 (2007).
[CrossRef]

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, J. Biomed. Opt. 13, 054036 (2008).
[CrossRef]

J. Cult. Herit. (1)

G. D. Smith and R. J. Klinshaw, J. Cult. Herit. 10, 415 (2009).
[CrossRef]

J. Mol. Struct. (1)

G. Lorenzetti, J. Striova, A. Zoppi, and E. M. Castellucci, J. Mol. Struct. 993, 97 (2011).
[CrossRef]

Opt. Lett. (1)

Sci. Transl. Med. (1)

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Stud. Conserv. (1)

M. Bacci and M. Picollo, Stud. Conserv. 41, 136 (1996).
[CrossRef]

Other (2)

H. R. Verma, in Atomic and Nuclear Analytical Methods (Springer, 2007), pp. 1–90.

S. Psilodimitrakopoulos, L. Serrado, I. Cormack, D. Artigas, and P. Loza-Alvarez, in Lasers in the Conservation of Artworks (CRC Press, 2008), pp. 15–22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Transient absorption images of synthetic ultramarine in acrylic (Golden artist colors #GMSA 400, top) and lapis lazuli in casein (Kremer pigments #10530, bottom). The scale bars are 100 µm. On the right we show the corresponding pump-probe delay traces in the indicated region of interest (white rectangle). The lines indicates double-exponential fits. For typical acquisition parameters the signal-to-noise ratio and the signal-to-background ratio (resulting from imperfect rejection of the pump) are about 100.

Fig. 2.
Fig. 2.

Zero time delay transient absorption images of (a) gray-blue (or low-quality) grade lapis lazuli (#10500), (b) pure lapis lazuli (#10530) and (c) crystalline light lapis lazuli (#10540). All the pigments are in casein binder and painted on paper. The total power impinging on each of the samples was 2.8 mW. (d) Stack of zero delay pump-probe images (500μm×500μm each) of lapis lazuli (#10530) at different depths; z=0μm is the top layer. (e) Bright field camera image of lapis lazuli. All the scale bars are 100 µm.

Fig. 3.
Fig. 3.

Pump-probe delay traces of pigments in casein binder (Kremer pigments). (a) Lapis lazuli (#10530), (b) Vermilion (#42000), (c) Indigo (#36000) and (d) Caput mortuum (#48750). Insets are the corresponding zero delay pump-probe images.

Tables (1)

Tables Icon

Table 1. List of Fit Parameters of the Decay Behavior for Various Types of Lapis Lazuli

Metrics