Abstract

We propose and theoretically examine a novel mid-infrared (mid-IR) photothermal spectroscopic sensing technique capable of detecting a single small molecule. Our conceptual design attains such high sensitivity by leveraging dramatically amplified photothermal effects in an optical nanocavity doubly resonant at both mid-IR pump and near-IR probe wavelengths. Unlike conventional mid-IR spectroscopy, the technique eliminates the need for cryogenically cooled mid-IR photodetectors, as optical detection is performed solely at the near-IR probe wavelength. A device design based on nested one-dimensional nanobeam photonic crystal cavities is numerically analyzed to demonstrate the technique’s potential for single small gas molecule detection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
    [CrossRef]
  2. C. Charlton, A. Katzir, and B. Mizaikoff, Anal. Chem. 77, 4398 (2005).
    [CrossRef]
  3. A. Nitkowski, L. Chen, and M. Lipson, Opt. Express 16, 11930 (2008).
    [CrossRef]
  4. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, J. Lightwave Technol. 27, 5240 (2009).
    [CrossRef]
  5. G. Gibson, S. Monk, and M. Padgett, Mod J. Opt. 49, 769 (2002).
    [CrossRef]
  6. A. Kosterev, Y. Bakhirkin, R. Curl, and F. Tittel, Opt. Lett. 27, 1902 (2002).
    [CrossRef]
  7. J. Hu, Opt. Express 18, 22174 (2010).
    [CrossRef]
  8. S. E. Bialkowski, Appl. Opt. 32, 3177 (1993).
    [CrossRef]
  9. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, J. Opt. Soc. Am. B 26, 1032 (2009).
    [CrossRef]
  10. SCHOTT North America, “Infrared Chalcogenide Glass IG3.”
  11. S. Madden, D. Choi, D. Bulla, A. Rode, B. Luther-Davies, V. Ta’eed, M. Pelusi, and B. J. Eggleton, Opt. Express 15, 14414 (2007).
    [CrossRef]
  12. J. Hu, N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, Opt. Express 18, 1469 (2010).
    [CrossRef]
  13. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, Opt. Express 17, 3802 (2009).
    [CrossRef]
  14. D. Nelson, J. Shorter, J. McManus, and M. Zahniser, Appl. Phys. B 75, 343 (2002).
    [CrossRef]
  15. M. Palamaru and P. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
    [CrossRef]
  16. Q. Quan and M. Loncar, Opt. Express 19, 18529 (2011).
    [CrossRef]
  17. HITRAN 2004 molecular spectroscopic database.
  18. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
    [CrossRef]

2011

Q. Quan and M. Loncar, Opt. Express 19, 18529 (2011).
[CrossRef]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

2010

2009

2008

2007

2006

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

2005

C. Charlton, A. Katzir, and B. Mizaikoff, Anal. Chem. 77, 4398 (2005).
[CrossRef]

2002

G. Gibson, S. Monk, and M. Padgett, Mod J. Opt. 49, 769 (2002).
[CrossRef]

A. Kosterev, Y. Bakhirkin, R. Curl, and F. Tittel, Opt. Lett. 27, 1902 (2002).
[CrossRef]

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, Appl. Phys. B 75, 343 (2002).
[CrossRef]

2001

M. Palamaru and P. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
[CrossRef]

1993

Agarwal, A.

Arnold, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Bakhirkin, Y.

Bialkowski, S. E.

Bulla, D.

Camacho, R.

Carlie, N.

Chan, J.

Charlton, C.

C. Charlton, A. Katzir, and B. Mizaikoff, Anal. Chem. 77, 4398 (2005).
[CrossRef]

Chen, L.

Choi, D.

Curl, R.

Ding, Y. J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Eggleton, B. J.

Eichenfield, M.

Feng, N.

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Gibson, G.

G. Gibson, S. Monk, and M. Padgett, Mod J. Opt. 49, 769 (2002).
[CrossRef]

Holler, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Hu, J.

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Katzir, A.

C. Charlton, A. Katzir, and B. Mizaikoff, Anal. Chem. 77, 4398 (2005).
[CrossRef]

Kimerling, L. C.

Kosterev, A.

Lalanne, P.

M. Palamaru and P. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
[CrossRef]

Lipson, M.

Loncar, M.

Luther-Davies, B.

Madden, S.

McManus, J.

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, Appl. Phys. B 75, 343 (2002).
[CrossRef]

Mizaikoff, B.

C. Charlton, A. Katzir, and B. Mizaikoff, Anal. Chem. 77, 4398 (2005).
[CrossRef]

Monk, S.

G. Gibson, S. Monk, and M. Padgett, Mod J. Opt. 49, 769 (2002).
[CrossRef]

Nelson, D.

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, Appl. Phys. B 75, 343 (2002).
[CrossRef]

Nitkowski, A.

Padgett, M.

G. Gibson, S. Monk, and M. Padgett, Mod J. Opt. 49, 769 (2002).
[CrossRef]

Painter, O.

Palamaru, M.

M. Palamaru and P. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
[CrossRef]

Pantano, C. G.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Pelusi, M.

Petit, L.

Quan, Q.

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Richardson, K.

Rode, A.

Ryan, J. V.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Shorter, J.

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, Appl. Phys. B 75, 343 (2002).
[CrossRef]

Song, R.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Sun, X. C.

Ta’eed, V.

Tittel, F.

Yu, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Zahniser, M.

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, Appl. Phys. B 75, 343 (2002).
[CrossRef]

Anal. Chem.

C. Charlton, A. Katzir, and B. Mizaikoff, Anal. Chem. 77, 4398 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Nelson, J. Shorter, J. McManus, and M. Zahniser, Appl. Phys. B 75, 343 (2002).
[CrossRef]

Appl. Phys. Lett.

M. Palamaru and P. Lalanne, Appl. Phys. Lett. 78, 1466 (2001).
[CrossRef]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Mod J. Opt.

G. Gibson, S. Monk, and M. Padgett, Mod J. Opt. 49, 769 (2002).
[CrossRef]

Non-Cryst J. Solids

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, Non-Cryst J. Solids 352, 584 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

SCHOTT North America, “Infrared Chalcogenide Glass IG3.”

HITRAN 2004 molecular spectroscopic database.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Tilted view of a suspended double resonance PhC nanobeam sensor cavity and a reference cavity; optical absorption by target analyte molecules at the pump wavelength leads to photothermal heat generation and temperature rise, which is detected through the thermo-optic resonance shift at the probe wavelength. The color represents optical field intensity distribution in the cavities.

Fig. 2.
Fig. 2.

(a) Top view of the double resonance ChGPhC nanobeam cavity design; (b) enlarged top-view of the 1.55 μm probe wavelength cavity.

Fig. 3.
Fig. 3.

Optical field intensity distribution of resonance mode at (a) (b) 5.27 μm wavelengths (b) shows a zoom-in view near the cavity center; (c) 1.55 μm wavelengths; (d) temperature distribution due to photothermal heat generation from a single moleculelocated at the cavity center; (e) single-molecule induced peak shift as a function of molecule position along the nanobeam. The same horizontal scale is used for (b)—(e).

Tables (1)

Tables Icon

Table 1. Material Properties Relevant to Photothermal Sensing

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Pc(r0)=12πλPuσPpuQpuεc(r0)|EN,pu(r0)|2,
·[κ(r)T(r)]=Pc(r0)·δ3(rr0),
Δλpr=λpr·dndT·n(r)·ΔT(r)·ε0|Epr(r)|2dVεc|Epr(r)|2dV,
FOM=n·κ1·dndT,

Metrics