Abstract

We present a novel parallel Raman microspectroscopy scheme for simultaneously collecting Raman spectra from multiple points. This scheme is realized by projectinga multiple-point laser illumination pattern using a spatial light modulator (SLM) and wide-field Raman imaging collection. We demonstrate the performance of this scheme using uniform samples, trapped polymer microparticles and fixed polymer microparticles with mixed molecular composition within a 50×50μm2 field of view. This scheme enables the acquisition of Raman spectra from as many as 40 points simultaneously using a single illumination pattern and detector recording frame without scanning.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, Anal. Chem. 75, 4312 (2003).
    [CrossRef]
  2. L. Kong, Z. P, P. Setlow, and Y. Li, J. Biomed. Opt. 16, 120503 (2011).
    [CrossRef]
  3. R. Liu, D. S. Taylor, D. L. Matthews, and J. W. Chan, Appl. Spectrosc. 64, 1308 (2010).
    [CrossRef]
  4. J. Qi, P. Motwani, J. Wolfe, and W.-C. Shih, Proc. SPIE 8219, 821903 (2012).
    [CrossRef]
  5. K. A. Christensen and M. D. Morris, Appl. Spectrosc. 52, 1145 (1998).
    [CrossRef]
  6. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
    [CrossRef]
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
    [CrossRef]

2012 (1)

J. Qi, P. Motwani, J. Wolfe, and W.-C. Shih, Proc. SPIE 8219, 821903 (2012).
[CrossRef]

2011 (1)

L. Kong, Z. P, P. Setlow, and Y. Li, J. Biomed. Opt. 16, 120503 (2011).
[CrossRef]

2010 (1)

2008 (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

2003 (1)

S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, Anal. Chem. 75, 4312 (2003).
[CrossRef]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

1998 (1)

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

Chan, J. W.

Christensen, K. A.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Huffman, S. W.

S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, Anal. Chem. 75, 4312 (2003).
[CrossRef]

Kong, L.

L. Kong, Z. P, P. Setlow, and Y. Li, J. Biomed. Opt. 16, 120503 (2011).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Levin, I. W.

S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, Anal. Chem. 75, 4312 (2003).
[CrossRef]

Li, Y.

L. Kong, Z. P, P. Setlow, and Y. Li, J. Biomed. Opt. 16, 120503 (2011).
[CrossRef]

Liu, R.

Matthews, D. L.

Morris, M. D.

Motwani, P.

J. Qi, P. Motwani, J. Wolfe, and W.-C. Shih, Proc. SPIE 8219, 821903 (2012).
[CrossRef]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

P, Z.

L. Kong, Z. P, P. Setlow, and Y. Li, J. Biomed. Opt. 16, 120503 (2011).
[CrossRef]

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

Qi, J.

J. Qi, P. Motwani, J. Wolfe, and W.-C. Shih, Proc. SPIE 8219, 821903 (2012).
[CrossRef]

Schaeberle, M. D.

S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, Anal. Chem. 75, 4312 (2003).
[CrossRef]

Schlucker, S.

S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, Anal. Chem. 75, 4312 (2003).
[CrossRef]

Setlow, P.

L. Kong, Z. P, P. Setlow, and Y. Li, J. Biomed. Opt. 16, 120503 (2011).
[CrossRef]

Shih, W.-C.

J. Qi, P. Motwani, J. Wolfe, and W.-C. Shih, Proc. SPIE 8219, 821903 (2012).
[CrossRef]

Taylor, D. S.

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

Wolfe, J.

J. Qi, P. Motwani, J. Wolfe, and W.-C. Shih, Proc. SPIE 8219, 821903 (2012).
[CrossRef]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

Anal. Chem. (1)

S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, Anal. Chem. 75, 4312 (2003).
[CrossRef]

Appl. Spectrosc. (2)

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, Front. Neural Circuits 2, 14 (2008).
[CrossRef]

J. Biomed. Opt. (1)

L. Kong, Z. P, P. Setlow, and Y. Li, J. Biomed. Opt. 16, 120503 (2011).
[CrossRef]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Proc. SPIE (1)

J. Qi, P. Motwani, J. Wolfe, and W.-C. Shih, Proc. SPIE 8219, 821903 (2012).
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (142 KB)     
» Media 2: AVI (2716 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) System configuration: laser line filter (F); beam expander (L1/L2); spatial light modulator (SLM); mirrors (M1/M2); tube lenses (TL1/TL2); dichroic beamsplitter (D); long-wave pass filter (LP); (b) Raman spectra of PS (A) and PMMA (C) measured using the proposed system vs. PS (B) and PMMA (D) measured by a confocal Raman system with spectral resolution 8cm1; spatial resolution in (c) x, (d) y and (e) z direction.

Fig. 2.
Fig. 2.

20-, 30- and 40-point illumination patterns: (a) half-sine; (b) full-sine; and (c) triangular patterns using the Raman peak of Si @ 520cm1.

Fig. 3.
Fig. 3.

(a) Visual image of mixed population of PS and PMMA; (b) laser spots from pattern no. 5 overlaid with the visual image; (c) identification of PS and PMMA microparticles.

Fig. 4.
Fig. 4.

(a) Visual image of 28 PS microparticles; (b) grouping scheme for the 3 projected patterns (17-6-5) overlaid with the visual image; (c) resulting overlaid Raman image from three illumination patterns.

Fig. 5.
Fig. 5.

(a) Average intensity and standard deviation versus the number of laser spots in the 11 SLM patterns employed in Fig. 3; (b) intensity corrected Raman image corresponding to the raw image in Fig. 4(c).

Fig. 6.
Fig. 6.

Simultaneous trapping and Raman imaging of 2 to 11 PS microparticles: (a) PS Raman image and (b) visual image (Media 1).

Fig. 7.
Fig. 7.

Multiple traps at different depths: (a) laser spots overlaid on 11 PMMA microparticles at different zs; (b) Raman intensity on the CCD of the in-focus (dotted) and out-of-focus (solid) PMMA microparticles by binning all rows (Media 2).

Metrics