Abstract

For paramagnetic gases (e.g., O2, NO, NO2, OH) Zeeman modulation spectrometry is a method for spectrometric gas sensing with extraordinary selectivity. In this Letter it is combined with a hollow capillary based gas cell, where the gas is filled in long light-guiding capillary that is placed inside a toroidal coil. Over conventional Zeeman spectrometry this has the advantage of lower power consumption at long optical path length, since several loops of the hollow capillary fiber can be placed in the coil. Compared to wavelength modulation spectrometry the advantage is insensitivity to interference by multimode propagation in the fiber and absorption by other nonparamagnetic gases, which should enhance both sensor stability and sensitivity. Experimental and theoretical results are presented, showing the feasibility of the approach.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, Laser Spectroscopy—Basic Concepts and Instrumentation, 3rd ed. (Springer, 2003).
  2. W. Urban and W. Herrmann, Appl. Phys. A 17, 325 (1978).
    [CrossRef]
  3. A. Kaldor, W. B. Olson, and A. G. Maki, Science 176, 508 (1972).
    [CrossRef]
  4. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
    [CrossRef]
  5. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
    [CrossRef]
  6. P. Kluczynski, A. M. Lindberg, and O. Axner, J. Quantum Spectrosc. Radiat. Transf. 83, 345 (2004).
    [CrossRef]
  7. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, Appl. Opt. 49, 5254 (2010).
    [CrossRef]
  8. W. T. McLyman, Transformer and Inductor Design Handbook (Dekker, 2004).
  9. R. George and J. Harrington, Appl. Opt. 44, 6449 (2005).
    [CrossRef]
  10. R. J. Brecha, L. M. Pedrotti, and D. Krause, J. Opt. Soc. Am. B 14, 1921 (1997).
    [CrossRef]
  11. Doko Engineering, capillary waveguide specifications, http://do-ko.jp/specs.html .

2010 (1)

2009 (1)

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
[CrossRef]

2005 (1)

2004 (1)

P. Kluczynski, A. M. Lindberg, and O. Axner, J. Quantum Spectrosc. Radiat. Transf. 83, 345 (2004).
[CrossRef]

1997 (1)

1980 (1)

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

1978 (1)

W. Urban and W. Herrmann, Appl. Phys. A 17, 325 (1978).
[CrossRef]

1972 (1)

A. Kaldor, W. B. Olson, and A. G. Maki, Science 176, 508 (1972).
[CrossRef]

Amann, M. C.

Axner, O.

P. Kluczynski, A. M. Lindberg, and O. Axner, J. Quantum Spectrosc. Radiat. Transf. 83, 345 (2004).
[CrossRef]

Brecha, R. J.

Chen, J.

Curl, J. R. F.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

Curl, R. F.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy—Basic Concepts and Instrumentation, 3rd ed. (Springer, 2003).

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
[CrossRef]

George, R.

Hangauer, A.

Harrington, J.

Herrmann, W.

W. Urban and W. Herrmann, Appl. Phys. A 17, 325 (1978).
[CrossRef]

Kaldor, A.

A. Kaldor, W. B. Olson, and A. G. Maki, Science 176, 508 (1972).
[CrossRef]

Kluczynski, P.

P. Kluczynski, A. M. Lindberg, and O. Axner, J. Quantum Spectrosc. Radiat. Transf. 83, 345 (2004).
[CrossRef]

Krause, D.

Lewicki, R.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
[CrossRef]

Lindberg, A. M.

P. Kluczynski, A. M. Lindberg, and O. Axner, J. Quantum Spectrosc. Radiat. Transf. 83, 345 (2004).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

Maki, A. G.

A. Kaldor, W. B. Olson, and A. G. Maki, Science 176, 508 (1972).
[CrossRef]

McLyman, W. T.

W. T. McLyman, Transformer and Inductor Design Handbook (Dekker, 2004).

Olson, W. B.

A. Kaldor, W. B. Olson, and A. G. Maki, Science 176, 508 (1972).
[CrossRef]

Pedrotti, L. M.

Pollock, C. R.

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

Strzoda, R.

Tittel, F. K.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
[CrossRef]

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

Urban, W.

W. Urban and W. Herrmann, Appl. Phys. A 17, 325 (1978).
[CrossRef]

Wysocki, G.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

W. Urban and W. Herrmann, Appl. Phys. A 17, 325 (1978).
[CrossRef]

J. Chem. Phys. (1)

G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, J. Chem. Phys. 72, 6602 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quantum Spectrosc. Radiat. Transf. (1)

P. Kluczynski, A. M. Lindberg, and O. Axner, J. Quantum Spectrosc. Radiat. Transf. 83, 345 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, Proc. Natl. Acad. Sci. USA 106, 12587 (2009).
[CrossRef]

Science (1)

A. Kaldor, W. B. Olson, and A. G. Maki, Science 176, 508 (1972).
[CrossRef]

Other (3)

W. T. McLyman, Transformer and Inductor Design Handbook (Dekker, 2004).

Doko Engineering, capillary waveguide specifications, http://do-ko.jp/specs.html .

W. Demtröder, Laser Spectroscopy—Basic Concepts and Instrumentation, 3rd ed. (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic setup of wavelength and Zeeman modulation systems. The slow current ramp is used to scan the spectrum by laser tuning. The faster modulation of wavelength or the magnetic field and corresponding demodulation with the lock-in amplifier realizes a derivative-like spectrum.

Fig. 2.
Fig. 2.

Schematic (a) and photograph (b) of the gas cell for ZMS with a HCF based gas cell.

Fig. 3.
Fig. 3.

The design parameters specifying the coil dimensions. The individual winding layers of the coil are located in the dark gray area labeled “copper wire.” The HCF cross section is shown on the right.

Fig. 4.
Fig. 4.

Second-harmonic spectra obtained by Zeeman modulation (top) and traditional wavelength modulation (bottom) at a O2 transition around 763 nm. The wavelength modulation spectrum shows the fiber spectral background in the order 5·104 which is not present in the Zeeman spectrum.

Tables (1)

Tables Icon

Table 1. Necessary Power for Relevant Coil Geometries (* for Present Setup) and Sinusoidal Magnetic Fields Optimum for Detection of NO (@5.3 μm) and O2 (@763 nm)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Fπ24(ds2di2)D=π28n(ds+di)dw2.
R=ρCu2n(ds+di)dw2B=μ0nIπD,
P=ρCuπ2B2D2μ02Fds+didsdi525WT2cmB2DFds+didsdi.

Metrics