Abstract

We demonstrate the passive suppression of stimulated Brillouin scattering in meter-length fiber-ring cavities through careful control of the fiber length. Experimentally we are able to demonstrate an over sixty-times increase in the Brillouin threshold of a 0.4 m fiber ring. This very simple suppression technique greatly simplifies the design of optical parametric devices based on fiber-ring cavities.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
    [CrossRef]
  2. S. Coen and M. Haelterman, Opt. Lett. 26, 39 (2001).
    [CrossRef]
  3. H. Lu and M. E. Marhic, Opt. Commun. 283, 1155 (2010).
    [CrossRef]
  4. F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
    [CrossRef]
  5. A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
    [CrossRef]
  6. A. Loayssa, R. Hernández, D. Benito, and S. Galech, Opt. Lett. 29, 638 (2004).
    [CrossRef]
  7. P. Bayvel and I. P. Giles, Opt. Lett. 14, 581 (1989).
    [CrossRef]
  8. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15, 103 (2009).
    [CrossRef]

2010 (2)

H. Lu and M. E. Marhic, Opt. Commun. 283, 1155 (2010).
[CrossRef]

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

2009 (1)

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15, 103 (2009).
[CrossRef]

2004 (3)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef]

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, Opt. Lett. 29, 638 (2004).
[CrossRef]

2001 (1)

1989 (1)

Bayart, D.

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Bayvel, P.

Benito, D.

Coen, S.

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

S. Coen and M. Haelterman, Opt. Lett. 26, 39 (2001).
[CrossRef]

Durecu-Legrand, A.

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Emplit, P.

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

Galech, S.

Giles, I. P.

Gorza, S.

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

Haelterman, M.

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

S. Coen and M. Haelterman, Opt. Lett. 26, 39 (2001).
[CrossRef]

Hernández, R.

Hirano, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15, 103 (2009).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef]

Kockaert, P.

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

Lantz, E.

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Leo, F.

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

Loayssa, A.

Lu, H.

H. Lu and M. E. Marhic, Opt. Commun. 283, 1155 (2010).
[CrossRef]

Maillotte, H.

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Marhic, M. E.

H. Lu and M. E. Marhic, Opt. Commun. 283, 1155 (2010).
[CrossRef]

Mussot, A.

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Nakanishi, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15, 103 (2009).
[CrossRef]

Okuno, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15, 103 (2009).
[CrossRef]

Onishi, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15, 103 (2009).
[CrossRef]

Simonneau, C.

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef]

Sylvestre, T.

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, IEEE J. Sel. Top. Quantum Electron. 15, 103 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Mussot, A. Durecu-Legrand, E. Lantz, C. Simonneau, D. Bayart, H. Maillotte, and T. Sylvestre, IEEE Photon. Technol. Lett. 16, 1289 (2004).
[CrossRef]

Nat. Photon. (1)

F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, and M. Haelterman, Nat. Photon. 4, 471 (2010).
[CrossRef]

Opt. Commun. (1)

H. Lu and M. E. Marhic, Opt. Commun. 283, 1155 (2010).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of: (a) a two-coupler fiber ring, and (b) a single-coupler fiber ring.

Fig. 2.
Fig. 2.

Mode spacing of a Brillouin-suppressed fiber ring.

Fig. 3.
Fig. 3.

Brillouin threshold of a fiber ring as a function of cavity length. The cavity parameters are T=0.95, and Tc=0.98.

Fig. 4.
Fig. 4.

Measured intracavity power (at resonance) as a function of input-pump power in a fiber ring without Brillouin suppression (solid circles, L=65.3cm), and in a fiber ring with Brillouin suppression (open circles, L=62.4cm). The Brillouin power measured in the unsuppressed ring is plotted as solid squares.

Fig. 5.
Fig. 5.

Measured (circles) and predicted (solid line) input power Brillouin threshold as a function of cavity length for a single 95/5 coupler ring.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L=cnνB(m+0.5),
PT=ln(TTc)L((1TTc)21T)(gBAeff)1
PT,parametricPT,Brillouin=12γgBAeff,

Metrics